• This record comes from PubMed

Genetic Manipulation of Paradiplonema papillatum

Language English Country United States Media print

Document type Journal Article

Here we present a collection of methods established for genetic manipulation of Paradiplonema papillatum (also referred to as Diplonema papillatum), so far the only diplonemid species that is genetically tractable and can therefore serve as a model organism, enabling functional studies of this very abundant and species-rich group of marine protists. We describe a complete transformation protocol which includes: (1) the Alamar blue assay, a method that serves to identify antibiotics, to which P. papillatum is sensitive and can be used for transformant selection; (2) the design and preparation of DNA constructs for functional genomics; and (3) two protocols for electroporation and transformant screening. We conclude with an immunoprecipitation protocol optimized for pulling down target-tagged proteins along with their interaction partners, allowing the characterization of protein complexes.

See more in PubMed

de Vargas C, Audic S, Henry N et al (2015) Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. https://doi.org/10.1126/science.1261605 PubMed DOI

Lukeš J, Flegontova O, Horák A (2015) Diplonemids. Curr Biol 25:R702–R704. https://doi.org/10.1016/j.cub.2015.04.052 PubMed DOI

Gawryluk RMR, del Campo J, Okamoto N et al (2016) Morphological identification and single-cell genomics of marine diplonemids. Curr Biol 26:3053–3059. https://doi.org/10.1016/j.cub.2016.09.013 PubMed DOI

Flegontova O, Flegontov P, Londoño PAC et al (2020) Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol 22:4014–4031. https://doi.org/10.1111/1462-2920.15190

Obiol A, Giner CR, Sanchez P et al (2020) A metagenomics assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour 20:718–731. https://doi.org/10.1111/1755-0998.13147 DOI

Faktorová D, Nisbet RER, Fernández Robledo JA et al (2020) Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat Methods 17:481–494. https://doi.org/10.1038/s41592-020-0796-x PubMed DOI PMC

Kaur B, Valach M, Peña-Diaz P et al (2018) Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ Microbiol 20:1030–1040. https://doi.org/10.1038/s41592-020-0796-x PubMed DOI

Faktorová D, Kaur B, Valach M et al (2020) Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ Microbiol 22:3660–3670. https://doi.org/10.1111/1462-2920.15130

Tashyreva D, Simpson AGB, Prokopchuk G et al (2022) Diplonemids—a review on “new” flagellates on the oceanic block. Protist 173:125868. https://doi.org/10.1016/j.protis.2022.125868 PubMed DOI

Záhonová K, Valach M, Tripathi P et al (2023) Subunit composition of mitochondrial dehydrogenase complexes in diplonemid flagellates. Biochim Biophys Acta Gen Subj 1867:130419. https://doi.org/10.1016/j.bbagen.2023.130419 PubMed DOI

Valach M, Benz C, Aguilar LC et al (2023) Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway. Nucleic Acids Res 51:6443–6460. https://doi.org/10.1093/nar/gkad422 PubMed DOI PMC

Faktorová D, Záhonová K, Benz C et al (2023) Functional differentiation of Sec13 paralog in the euglenozoan protists. Open Biol 13:220364. https://doi.org/10.1098/rsob.220364 PubMed DOI PMC

Benz C, Raas MWD, Tripathi P et al (2024) On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa. MBio 15:12. https://doi.org/10.1128/mbio.02936-24 DOI

Beverley SM, Clayton C (1993) Transfection of Leishmania and Trypanosoma brucei by electroporation. Methods Mol Biol 21:333–348. https://doi.org/10.1385/0-89603-239-6:333 PubMed DOI

Tashyreva D, Votýpka J, Yabuki A et al (2025) Description of new diplonemids (Diplonemea, Euglenozoa) and their endosymbionts: charting the morphological diversity of these poorly known heterotrophic flagellates. Protist 177:126090. https://doi.org/10.1016/j.protis.2025.126090 PubMed DOI

Valach M, Moreira S, Petitjean C et al (2023) Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 21:99. https://doi.org/10.1186/s12915-023-01563-9 PubMed DOI PMC

Akiyoshi B, Faktorová D, Lukeš J (2025) Discovery of unique mitotic mechanisms in Paradiplonema papillatum. Open Biol 15:250096. https://doi.org/10.1098/rsob.250096

Räz B, Iten M, Grether-Bühler Y et al (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 68:139–147. https://doi.org/10.1016/s0001-706x(97)00079-x PubMed DOI

Gould MK, Bachmaier S, Ali JA et al (2013) Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA. Antimicrob Agents Chemother 57:4882–4893. https://doi.org/10.1128/AAC.00508-13 PubMed DOI PMC

Kelly S, Reed J, Kramer S et al (2007) Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol 154:103–109. https://doi.org/10.1016/j.molbiopara.2007.03.012 PubMed DOI PMC

Zhou Y, Zhang Y, He W et al (2018) Rapid regeneration and reuse of silica columns from PCR purification and gel extraction kits. Sci Rep 8:12870. https://doi.org/10.1038/s41598-018-30316-w PubMed DOI PMC

Rodríguez-Ezpeleta N, Teijeiro S, Forget L et al (2009) Construction of cDNA libraries: focus on protists and fungi. Methods Mol Biol 533:33–47. https://doi.org/10.1007/978-1-60327-136-3_3 PubMed DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...