Paeonia species have been valued for their ethnomedicinal uses in various countries and received much interest among the scientific community for their therapeutic properties, including anti-microbial, anti-inflammatory, anti-cancer, nephroprotective and hepatoprotective effects. The multiple phytotherapeutical applications of Paeonia species inspired us to establish the phytochemical fingerprint and to evaluate the biological properties of ethyl acetate, methanol, and aqueous extracts from the roots and aerial parts of two Paeonia species (P. arietina G. Anderson and P. kesrounansis Thiébaut). Phytoconstituents of P. arietina and P. kesrounansis extracts were analyzed using 1D and 2D NMR and LC-DAD-ESI-MS. The total content of phenolics (TPC) and flavonoids (TFC) in the extracts was also evaluated. The antioxidant activity was profiled using DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation assays. Enzyme inhibitory properties were evaluated against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase, and α-glucosidase. Phytochemical analysis of P. arietina and P. kesrounansis extracts showed the presence of galloyl esters of sugars, galloyl monoterpenes, and glycosylated flavonoids. The three solvent extracts presented different behavior in the bioassays. The highest antioxidant activity, tyrosinase and AChE inhibition were observed for the methanolic extract of the aerial parts of P. kesrounansis. In addition, the ethyl acetate extracts of the aerial parts of both plants were the most effective inhibitors of α-amylase. The highest BChE inhibition was observed for root methanolic extract of P. kesrounansis while the root ethyl acetate extract of P. arietina exerted the strongest inhibition of α-glucosidase. Methanol extract of P. kesrounansis aerial parts presented the highest TPC, while TFC was greatest in the corresponding extract of P. arietina. Our findings can be considered as a starting point for future studies to further validate the effectiveness and safety profiles of these plants in folk medicine.
- MeSH
- antioxidancia chemie izolace a purifikace farmakologie MeSH
- chromatografie kapalinová metody MeSH
- fenoly analýza izolace a purifikace MeSH
- flavonoidy analýza izolace a purifikace MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- inhibitory enzymů chemie izolace a purifikace farmakologie MeSH
- kořeny rostlin MeSH
- nadzemní části rostlin MeSH
- Paeonia chemie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae) has a long history of use by folk populations for the management of multiple human ailments. Based on the published literature, there has been no attempt to conduct a comparative assessment of the biological activity and the phytochemical profiles of the leaves and stem bark of A. leiocarpus extracted using methanol, ethyl acetate, and water. By high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn) analysis, quinic, shikimic, gallic, and protocatechuic acids were tentatively identified from all the extracts, while chlorogenic, caffeic, ferulic, and dodecanedioic acids were only characterised from the leaves extracts. Additionally, a pharmacological study was carried out to evaluate potential protective effects that are induced by the extracts in rat colon and colon cancer HCT116 cell line. In general, the methanol and water extracts of A. leiocarpus leaves and stem bark showed potent radical scavenging and reducing properties. It was noted that the stem bark extracts were more potent antioxidants as compared to the leaves extracts. The methanol extract of A. leiocarpus leaves showed the highest acetyl (4.68 mg galantamine equivalent/g) and butyryl (4.0 mg galantamine equivalent/g) cholinesterase inhibition. Among ethyl acetate extracts, the pharmacological investigation suggested stem bark ethyl acetate extracts to be the most promising. This extract revealed ability to protect rat colon from lipopolysaccharide-induced oxidative stress, without exerting promoting effects on HCT116 cell line viability and migration. As a conclusion, A. leiocarpus represents a potential source of bioactive compounds in the development of novel therapeutic agents.
- Publikační typ
- časopisecké články MeSH
A growing number of evidences from clinical and preclinical studies have shown that dysregulation of microRNA (miRNA) function contributes to the progression of cancer and thus miRNA can be an effective target in therapy. Dietary phytochemicals, such as quercetin, are natural products that have potential anti-cancer properties due to their proven antioxidant, anti-inflammatory, and anti-proliferative effects. Available experimental studies indicate that quercetin could modulate multiple cancer-relevant miRNAs including let-7, miR-21, miR-146a and miR-155, thereby inhibiting cancer initiation and development. This paper reviews the data supporting the use of quercetin for miRNA-mediated chemopreventive and therapeutic strategies in various cancers, with the aim to comprehensively understand its health-promoting benefits and pharmacological potential. Integration of technology platforms for miRNAs biomarker and drug discovery is also presented.
- MeSH
- antioxidancia farmakologie terapeutické užití MeSH
- antitumorózní látky farmakologie terapeutické užití MeSH
- biologické markery MeSH
- chemoprofylaxe MeSH
- lidé MeSH
- mikro RNA * MeSH
- nádory * farmakoterapie genetika prevence a kontrola MeSH
- objevování léků MeSH
- quercetin farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH