BACKGROUND: Circulatory support with a catheter-based microaxial flow pump (mAFP) plays a major role in the treatment of severe cardiogenic shock. In most patients who fail to recover while on temporary mechanical circulatory support (tMCS) and who are not eligible for heart transplantation, durable left ventricular assist device (dLVAD) implantation is usually considered a reliable option. This study aimed to describe the outcome of dLVAD therapy following mAFP support and to identify predictors of mortality. METHODS: This was a retrospective analysis of data from a multicenter registry on patients who underwent dLVAD implantation following tMCS with a mAFP between January 2017 and October 2022 (n = 332) from 19 European centers. RESULTS: Patients were supported with an Impella 5.5 (n = 92), 5.0 (n = 153) or CP (n = 87) and were transitioned to a HeartWare HVAD (n = 128) or Heartmate 3 (n = 204) during the same period. One hundred and twenty-five patients (39.2%) also required extracorporeal life support before and/or during mAFP therapy. The 30-day and 1-year survival were 87.8% and 71.1%, respectively. The following risk factors for 1-year mortality were identified: age (odds ratio [OR], 1.02), specifically age over 55 years (OR, 1.09), body mass index >30 kg/m2 (OR, 2.2), female sex (OR for male sex, 0.43), elevated total bilirubin (OR, 1.12), and low platelet count (OR, 0.996). CONCLUSIONS: Based on the identified risk factors, a risk score for estimating 1-year mortality was calculated to optimize patient selection for dLVAD implantation.
- Publikační typ
- časopisecké články MeSH
Pulmonary hypertension (PH) associated with left heart failure (LHF) (PH-LHF) is one of the most common causes of PH. It directly contributes to symptoms and reduced functional capacity and negatively affects right heart function, ultimately leading to a poor prognosis. There are no specific treatments for PH-LHF, despite the high number of drugs tested so far. This scientific document addresses the main knowledge gaps in PH-LHF with emphasis on pathophysiology and clinical trials. Key identified issues include better understanding of the role of pulmonary venous versus arteriolar remodelling, multidimensional phenotyping to recognize patient subgroups positioned to respond to different therapies, and conduct of rigorous pre-clinical studies combining small and large animal models. Advancements in these areas are expected to better inform the design of clinical trials and extend treatment options beyond those effective in pulmonary arterial hypertension. Enrichment strategies, endpoint assessments, and thorough haemodynamic studies, both at rest and during exercise, are proposed to play primary roles to optimize early-stage development of candidate therapies for PH-LHF.