p53 is a tetrameric protein with a thermodynamically unstable deoxyribonucleic acid (DNA)-binding domain flanked by intrinsically disordered regulatory domains that control its activity. The unstable and disordered segments of p53 allow high flexibility as it interacts with binding partners and permits a rapid on/off switch to control its function. The p53 tetramer can exist in multiple conformational states, any of which can be stabilized by a particular modification. Here, we apply the allostery model to p53 to ask whether evidence can be found that the "activating" C-terminal phosphorylation of p53 stabilizes a specific conformation of the protein in the absence of DNA. We take advantage of monoclonal antibodies for p53 that measure indirectly the following conformations: unfolded, folded, and tetrameric. A double antibody capture enzyme linked-immunosorbent assay was used to observe evidence of conformational changes of human p53 upon phosphorylation by casein kinase 2 in vitro. It was demonstrated that oligomerization and stabilization of p53 wild-type conformation results in differential exposure of conformational epitopes PAb1620, PAb240, and DO12 that indicates a reduction in the "unfolded" conformation and increases in the folded conformation coincide with increases in its oligomerization state. These data highlight that the oligomeric conformation of p53 can be stabilized by an activating enzyme and further highlight the utility of the allostery model when applied to understanding the regulation of unstable and intrinsically disordered proteins.
- MeSH
- adenosintrifosfát metabolismus MeSH
- alosterická regulace MeSH
- fosforylace MeSH
- kaseinkinasa II metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- mutace MeSH
- nádorový supresorový protein p53 chemie genetika metabolismus MeSH
- proteinové domény MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND INFORMATION: The optimal repair of DNA lesions is fundamental for physiological processes. We asked whether the recruitment of HP1β, 53BP1 and BMI1 proteins to ultraviolet (UVA)-induced DNA lesions requires functional A-type lamins. RESULTS: We found that UVA irradiation of nuclear lamina abolished the fluorescence of mCherry-tagged A-type lamins and destroyed the nuclear lamina as also observed by electron microscopy studies. Similarly, an absence of endogenous A- and B-type lamins was found in irradiated regions by UVA. However, irradiation did not affect the recruitment of HP1β, 53BP1 and BMI1 to DNA lesions. The UVA-induced shrinkage of the nuclear lamina, which anchors chromatin, explains why UVA-micro-irradiated chromatin is relaxed. Conversely, additional experiments with γ-irradiation showed that the nuclear lamina remained intact and the genome-wide level of HP1β was stable. Fluorescence intensity of HP1β and BMI1 in UVA-induced DNA lesions and level of HP1β after γ-irradiation were unaffected by deficiency in A-type lamins, whereas those parameters of 53BP1 were changed. CONCLUSIONS: We conclude that only the 53BP1 status in DNA lesions, induced by UVA or γ-rays, is affected by A-type lamin deficiency, which was not observed for heterochromatin-related proteins HP1β and BMI1.
- MeSH
- buňky 3T3 MeSH
- chromozomální proteiny, nehistonové analýza metabolismus MeSH
- DNA vazebné proteiny analýza metabolismus MeSH
- DNA genetika MeSH
- lamin typ A analýza metabolismus MeSH
- myši MeSH
- poškození DNA účinky záření MeSH
- PRC1 analýza metabolismus MeSH
- protoonkogenní proteiny analýza metabolismus MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH