During the course of a study assessing the bacterial diversity of a coniferous forest soil (pH 3.8) in the Bohemian Forest National Park (Czech Republic), we isolated strain S15(T) which corresponded to one of the most abundant soil OTUs. Strain S15(T) is represented by Gram-negative, motile, rod-like cells that are 0.3-0.5μm in diameter and 0.9-1.1μm in length. Its pH range for growth was 3-6, with optimal conditions found at approximately 4-5. It can grow at temperatures between 20°C and 28°C, with optimum growth at 22-24°C. Its respiratory quinone is MK-8, and its main fatty acid is iso-C15:0 (73.7%). The G+C DNA content was 58.2mol%. According to the 16S rRNA gene sequence analysis, strain S15(T) belongs to subdivision 1 of the phylum Acidobacteria, being affiliated to the cluster of Acidipila rosea AP8(T) and Acidobacterium capsulatum ATCC 51196(T). Analysis of the S15(T) genome revealed the presence of 404 genes that are involved in carbohydrate metabolism, which indicates the metabolic potential to degrade polysaccharides of plant and fungal origin. Based on genotypic and phenotypic characteristics, the strain S15(T) represents a new genus and species within the family Acidobacteriaceae, for which the name Silvibacterium bohemicum gen. nov., sp. nov. is proposed (type strain S15(T)=LMG 28607(T)=CECT 8790(T)).
- MeSH
- Acidobacteria klasifikace genetika izolace a purifikace MeSH
- cévnaté rostliny MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- genom bakteriální genetika MeSH
- lesy MeSH
- mastné kyseliny analýza MeSH
- metabolismus sacharidů genetika MeSH
- polysacharidy metabolismus MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- techniky typizace bakterií MeSH
- veřejné parky MeSH
- zastoupení bazí genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Understanding the activity of bacteria in coniferous forests is highly important, due to the role of these environments as a global carbon sink. In a study of the microbial biodiversity of montane coniferous forest soil in the Bohemian Forest National Park (Czech Republic), we succeeded in isolating bacterial strain S55(T), which belongs to one of the most abundant operational taxonomic units (OTUs) in active bacterial populations, according to the analysis of RNA-derived 16S rRNA amplicons. The 16S rRNA gene sequence analysis showed that the species most closely related to strain S55(T) include Bryocella elongata SN10(T) (95.4% identity), Acidicapsa ligni WH120(T) (95.2% identity), and Telmatobacter bradus TPB6017(T) (95.0% identity), revealing that strain S55(T) should be classified within the phylum Acidobacteria, subdivision 1. Strain S55(T) is a rod-like bacterium that grows at acidic pH (3 to 6). Its phylogenetic, genotypic, phenotypic, and chemotaxonomic characteristics indicate that strain S55(T) corresponds to a new genus within the phylum Acidobacteria; thus, we propose the name Terracidiphilus gabretensis gen. nov., sp. nov. (strain S55(T) = NBRC 111238(T) = CECT 8791(T)). This strain produces extracellular enzymes implicated in the degradation of plant-derived biopolymers. Moreover, analysis of the genome sequence of strain S55(T) also reveals the presence of enzymatic machinery required for organic matter decomposition. Soil metatranscriptomic analyses found 132 genes from strain S55(T) being expressed in the forest soil, especially during winter. Our results suggest an important contribution of T. gabretensis S55(T) in the carbon cycle in the Picea abies coniferous forest.
- MeSH
- Acidobacteria genetika izolace a purifikace metabolismus MeSH
- biodegradace MeSH
- biotransformace MeSH
- fylogeneze MeSH
- lesy MeSH
- molekulární sekvence - údaje MeSH
- půdní mikrobiologie * MeSH
- rostliny metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH