The genus Betanucleorhabdovirus includes plant viruses with negative sense, non-segmented, single-stranded RNA genomes. Here, we characterized putative novel betanucleorhabdoviruses infecting a medically important plant, elderberry. Total RNA was purified from the leaves of several plants, ribodepleted and sequenced using the Illumina platform. Sequence data analysis led to the identification of thirteen contigs of approximately 13.5 kb, showing a genome structure (3'-N-P-P3-M-G-L-5') typical of plant rhabdoviruses. The detected isolates showed 69.4 to 98.9% pairwise nucleotide identity and had the highest identity among known viruses (64.7-65.9%) with tomato betanucleorhabdovirus 2. A detailed similarity analysis and a phylogenetic analysis allowed us to discriminate the elderberry isolates into five groups, each meeting the sequence-based ICTV demarcation criterion in the Betanucleorhabdovirus genus (lower than 75% identity for the complete genome). Hence, the detected viruses appear to represent five novel, closely related betanucleorhabdoviruses, tentatively named Sambucus betanucleorhabdovirus 1 to 5.
- Publikační typ
- časopisecké články MeSH
The genus Cytorhabdovirus includes plant viruses with an unsegmented, single-stranded, negative-sense RNA genome that infect various plant hosts. In this work, we report the detection of a new cytorhabdovirus infecting elderberry (Sambucus nigra L.). Total RNA was purified from infected leaves and, after ribodepletion, sequenced using an Illumina system. The RNA genome of viral isolate B15 is 12,622 nucleotides (nt) long, and that of isolate B42 is 12,621 nt long. A nearly complete sequence (12,592 nt) was also obtained for a third isolate (B160). The RNA genomes of all three isolates showed an organisation typical of cytorhabdoviruses, harbouring all six of the expected genes (3 ́ N-P-P3-M-G-L 5 ́), separated by intergenic regions. These isolates were closely related to each other (99.5-99.6% nt sequence identity) and showed the highest overall similarity to trichosanthes associated rhabdovirus 1 (63.5% identity) and Wuhan insect virus 5 (58% identity), and similar results were obtained when comparing individual coding sequences or proteins. Phylogenetic analysis confirmed that this elderberry virus, for which we propose the name "sambucus virus 1" belongs to the genus Cytorhabdovirus and fulfils the criteria to represent a novel species.
- MeSH
- bez černý * MeSH
- bez * genetika MeSH
- fylogeneze MeSH
- genom virový MeSH
- nemoci rostlin MeSH
- otevřené čtecí rámce MeSH
- Rhabdoviridae * MeSH
- RNA MeSH
- virové proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The genus Bromovirus currently contains six species whose members have relatively narrow host ranges. In the present work, a new bromovirus infecting elderberry (Sambucus nigra L.) is reported. dsRNA was purified and sequenced by next-generation sequencing, and with minimal additional completion by Sanger sequencing, the full tripartite genome was obtained. RNA1 is 3241 nt long and contains ORF1 (1a protein), RNA2 is 2810 nt long and contains ORF2 (2a protein), and RNA3 is 2244 nt long and contains ORF3a (movement protein) and ORF3b (coat protein, CP), separated by an intercistronic poly(A) stretch. Proteins 1a and 2a showed highest sequence identity (69.9% and 69.4%) to the corresponding proteins of melandrium yellow fleck virus. The coat protein showed highest sequence identity (67.9%) to that of brome mosaic virus. The genome shows a typical bromovirus organisation comprising of all the conserved protein domains within the genus. Phylogenetic analysis supports the assignment of this virus as a new member of the genus Bromovirus, for which the name "sambucus virus S" (SVS) is proposed.
- MeSH
- bez černý virologie MeSH
- Bromovirus klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genom virový * MeSH
- molekulární sekvence - údaje MeSH
- nemoci rostlin virologie MeSH
- otevřené čtecí rámce MeSH
- RNA virová genetika MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
A novel virus infecting elderberry was identified by high-throughput Illumina sequencing of double strand RNAs isolated form elderberry leaves. The complete genome sequence obtained (4512 nucleotides in length) shows an organization typical for aureusviruses, with five open reading frames (ORFs) and the typical ORF1-RT expression by the readthrough of an amber stop codon. The analysis of the RNA-dependent RNA polymerase (RdRp) and coat protein (CP) sequences showed the highest identity (respectively 75.7% and 55%) with the corresponding amino acid sequences of Pothos latent virus. These two values, below the species demarcation criteria for the genus, indicate that the detected virus is a new member of genus Aureusvirus, family Tombusviridae, with the proposed name Elderberry aureusvirus 1 (ElAV1). A survey confirmed the wide distribution of ElAV1 in elderberry in the Czech Republic. Phylogenetic analyses of RdRp and CP sequences showed distinct microevolution of geographically separated isolates, with a tendency for isolates coming from close localities or from the same region to cluster together but heterogeneity of viral populations down to a local scale was also observed. The symptomatology of the new virus is not fully clear, but many infected trees were either asymptomatic or showed mild chlorotic mosaics. More severe symptoms, potentially impacting yields of flowers or berries, were observed in plants with mixed infections of ElAV1 and other elderberry viruses. Further efforts are now needed to determine ElAV1 prevalence outside the Czech Republic and to unravel its epidemiology.
Creeping thistle [Cirsium arvense (L.) Scop.] and dahlia (Dahlia sp.) plants showing typical symptoms of phytoplasma infection including yellowing, stunting, inflorescence and proliferation, were sampled; the presence of phytoplasma was confirmed by standard PCR using universal primers. RFLP analysis allowed classification of the detected phytoplasma strains CirYS, CirYS1 and DahlP within the 16SrXI group, the unique restriction profile F2nR2 fragment obtained in silico by iPhyClassifier indicated that they belong to the new 16SrXI-E subgroup. Genetic analysis of the 16S rRNA gene revealed that the studied strains shared less than 97.5% similarity with all of the previously described 'Candidatus Phytoplasma' species. The closest relatives are 'Candidatus Phytoplasma cynodontis' and 'Candidatus Phytoplasma oryzae' with 96.8% and 96.6% similarity. All strains studied bear three specific regions in the 16S rRNA gene, discriminating them from the other phytoplasma species. Phylogenetic analysis of the 16S rRNA and secA genes confirmed this specificity, as the creeping thistle and dahlia phytoplasma strains clustered in a distinguishable lineage group. The uniqueness of the genetic analysis agrees with the biological characterization of the studied phytoplasma strains, their host range, and geographical distribution. The strains only infect dicotyledonous plants in Europe, contrary to their closest relatives. Based on their unique properties, it could be concluded that the studied phytoplasma strains represent a discrete group that is proposed as a novel taxon 'Candidatus Phytoplasma cirsii', with strain CirYS as a reference strain.
- MeSH
- Cirsium mikrobiologie MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- molekulární sekvence - údaje MeSH
- nemoci rostlin mikrobiologie MeSH
- Phytoplasma klasifikace genetika izolace a purifikace MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH