Acquiring pulmonary circulation parameters as a potential marker of cardiopulmonary function is not new. Methods to obtain these parameters have been developed over time, with the latest being first-pass perfusion sequences in cardiovascular magnetic resonance (CMR). Even though more data on these parameters has been recently published, different nomenclature and acquisition methods are used across studies; some works even reported conflicting data. The most commonly used circulation parameters obtained using CMR include pulmonary transit time (PTT) and pulmonary transit beats (PTB). PTT is the time needed for a contrast agent (typically gadolinium-based) to circulate from the right ventricle (RV) to the left ventricle (LV). PTB is the number of cardiac cycles the process takes. Some authors also include corrected heart rate (HR) versions along with standard PTT. Besides other methods, CMR offers an option to assess stress circulation parameters, but data are minimal. This review aims to summarize the up-to-date findings and provide an overview of the latest progress on this promising, dynamically evolving topic.
Rest pulmonary circulation parameters such as pulmonary transit time (PTT), heart rate corrected PTT (PTTc) and pulmonary transit beats (PTB) can be evaluated using several methods, including the first-pass perfusion from cardiovascular magnetic resonance. As previously published, up to 58% of patients after HTx have diastolic dysfunction detectable only in stress conditions. By using adenosine stress perfusion images, stress analogues of the mentioned parameters can be assessed. By dividing stress to rest biomarkers, potential new ratio parameters (PTT ratio and PTTc ratio) can be obtained. The objectives were to (1) provide more evidence about stress pulmonary circulation biomarkers, (2) present stress to rest ratio parameters, and (3) assess these biomarkers in patients with presumed diastolic dysfunction after heart transplant (HTx) and in childhood cancer survivors (CCS) without any signs of diastolic dysfunction. In this retrospective study, 48 patients after HTx, divided into subgroups based on echocardiographic signs of diastolic dysfunction (41 without, 7 with) and 39 CCS were enrolled. PTT was defined as the difference between the onset time of the signal intensity increase in the left and the right ventricle. PTT in rest conditions were without significant differences when comparing the CCS and HTx subgroup without diastolic dysfunction (4.96 ± 0.93 s vs. 5.51 ± 1.14 s, p = 0.063) or with diastolic dysfunction (4.96 ± 0.93 s vs. 6.04 ± 1.13 s, p = 0.13). However, in stress conditions, both PTT and PTTc were significantly lower in the CCS group than in the HTx subgroups, (PTT: 3.76 ± 0.78 s vs. 4.82 ± 1.03 s, p < 0.001; 5.52 ± 1.56 s, p = 0.002). PTT ratio and PTTc ratio were below 1 in all groups. In conclusion, stress pulmonary circulation parameters obtained from CMR showed prolonged PTT and PTTc in HTx groups compared to CCS, which corresponds with the presumption of underlying diastolic dysfunction. The ratio parameters were less than 1.
BACKGROUND: In terms of cardiovascular magnetic resonance are haematocrit values required for calculation of extracellular volume fraction (ECV). Previously published studies have hypothesized that haematocrit could be calculated from T1 blood pool relaxation time, however only native T1 relaxation time values have been used and the resulting formulae had been both in reciprocal and linear proportion. The aim of the study was to generate a synthetic haematocrit formula from only native relaxation time values first, calculate whether linear or reciprocal model is more precise in haematocrit estimation and then determine whether adding post-contrast values further improve its precision. METHODS: One hundred thirty-nine subjects underwent CMR examination. Haematocrit was measured using standard laboratory methods. Afterwards T1 relaxation times before and after the application of a contrast agent were measured and a statistical relationship between these values was calculated. RESULTS: Different linear and reciprocal models were created to estimate the value of synthetic haematocrit and ECV. The highest coefficient of determination was observed in the combined reciprocal model "- 0.047 + (779/ blood native) - (11.36/ blood post-contrast)". CONCLUSIONS: This study provides more evidence that assessing synthetic haematocrit and synthetic ECV is feasible and statistically most accurate model to use is reciprocal. Adding post-contrast values to the calculation was proved to improve the precision of the formula statistically significantly.
- MeSH
- hematokrit * MeSH
- kontrastní látky * MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- myokard patologie MeSH
- nemoci srdce krev diagnostické zobrazování MeSH
- organokovové sloučeniny * MeSH
- prediktivní hodnota testů MeSH
- retrospektivní studie MeSH
- studie proveditelnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH