Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
- MeSH
- lidé MeSH
- ligandy MeSH
- membránové glykoproteiny metabolismus MeSH
- mezibuněčná komunikace * MeSH
- receptory buněčného povrchu metabolismus MeSH
- savci metabolismus MeSH
- spermie cytologie metabolismus MeSH
- zona pellucida metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Sperm capacitation, one of the key events during successful fertilization, is associated with extensive structural and functional sperm remodeling, beginning with the modification of protein composition within the sperm plasma membrane. The ubiquitin-proteasome system (UPS), a multiprotein complex responsible for protein degradation and turnover, participates in capacitation events. Previous studies showed that capacitation-induced shedding of the seminal plasma proteins such as SPINK2, AQN1, and DQH from the sperm surface is regulated by UPS. Alterations in the sperm surface protein composition also relate to the porcine β-microseminoprotein (MSMB/PSP94), seminal plasma protein known as immunoglobulin-binding factor, and motility inhibitor. MSMB was detected in the acrosomal region as well as the flagellum of ejaculated boar spermatozoa, while the signal disappeared from the acrosomal region after in vitro capacitation (IVC). The involvement of UPS in the MSMB degradation during sperm IVC was studied using proteasomal interference and ubiquitin-activating enzyme (E1) inhibiting conditions by image-based flow cytometry and Western blot detection. Our results showed no accumulation of porcine MSMB either under proteasomal inhibition or under E1 inhibiting conditions. In addition, the immunoprecipitation study did not detect any ubiquitination of sperm MSMB nor was MSMB detected in the affinity-purified fraction containing ubiquitinated sperm proteins. Based on our results, we conclude that UPS does not appear to be the regulatory mechanism in the case of MSMB and opening new questions for further studies. Thus, the capacitation-induced processing of seminal plasma proteins on the sperm surface may be more complex than previously thought, employing multiple proteolytic systems in a non-redundant manner.
- MeSH
- kapacitace spermií fyziologie MeSH
- prasata MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- sekreční proteiny prostaty metabolismus MeSH
- spermie metabolismus fyziologie MeSH
- ubikvitin metabolismus MeSH
- ubikvitinace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The Wnt signaling pathway is required during embryonic development and for the maintenance of homeostasis in adult tissues. However, aberrant activation of the pathway is implicated in a number of human disorders, including cancer of the gastrointestinal tract, breast, liver, melanoma, and hematologic malignancies. In this study, we identified monensin, a polyether ionophore antibiotic, as a potent inhibitor of Wnt signaling. The inhibitory effect of monensin on the Wnt/β-catenin signaling cascade was observed in mammalian cells stimulated with Wnt ligands, glycogen synthase kinase-3 inhibitors, and in cells transfected with β-catenin expression constructs. Furthermore, monensin suppressed the Wnt-dependent tail fin regeneration in zebrafish and Wnt- or β-catenin-induced formation of secondary body axis in Xenopus embryos. In Wnt3a-activated HEK293 cells, monensin blocked the phoshorylation of Wnt coreceptor low-density lipoprotein receptor related protein 6 and promoted its degradation. In human colorectal carcinoma cells displaying deregulated Wnt signaling, monensin reduced the intracellular levels of β-catenin. The reduction attenuated the expression of Wnt signaling target genes such as cyclin D1 and SP5 and decreased the cell proliferation rate. In multiple intestinal neoplasia (Min) mice, daily administration of monensin suppressed progression of the intestinal tumors without any sign of toxicity on normal mucosa. Our data suggest monensin as a prospective anticancer drug for therapy of neoplasia with deregulated Wnt signaling.
- MeSH
- antibiotika antitumorózní farmakologie terapeutické užití MeSH
- beta-katenin metabolismus MeSH
- dánio pruhované MeSH
- experimentální nádory MeSH
- HEK293 buňky MeSH
- kolorektální nádory farmakoterapie patologie MeSH
- LDL receptor related protein 6 metabolismus MeSH
- lidé MeSH
- monensin farmakologie terapeutické užití MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- signální dráha Wnt účinky léků MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- Xenopus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH