Molecular identification of micro- and macroorganisms based on nuclear markers has revolutionized our understanding of their taxonomy, phylogeny and ecology. Today, research on the diversity of eukaryotes in global ecosystems heavily relies on nuclear ribosomal RNA (rRNA) markers. Here, we present the research community-curated reference database EUKARYOME for nuclear ribosomal 18S rRNA, internal transcribed spacer (ITS) and 28S rRNA markers for all eukaryotes, including metazoans (animals), protists, fungi and plants. It is particularly useful for the identification of arbuscular mycorrhizal fungi as it bridges the four commonly used molecular markers-ITS1, ITS2, 18S V4-V5 and 28S D1-D2 subregions. The key benefits of this database over other annotated reference sequence databases are that it is not restricted to certain taxonomic groups and it includes all rRNA markers. EUKARYOME also offers a number of reference long-read sequences that are derived from (meta)genomic and (meta)barcoding-a unique feature that can be used for taxonomic identification and chimera control of third-generation, long-read, high-throughput sequencing data. Taxonomic assignments of rRNA genes in the database are verified based on phylogenetic approaches. The reference datasets are available in multiple formats from the project homepage, http://www.eukaryome.org.
- MeSH
- databáze genetické MeSH
- databáze nukleových kyselin MeSH
- Eukaryota * genetika MeSH
- fylogeneze MeSH
- geny rRNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The sympatric occurrence of closely related lineages displaying conserved morphological and ecological traits is often characteristic of free-living microbes. Gene flow, recombination, selection, and mutations govern the genetic variability between these cryptic lineages and drive their differentiation. However, sequencing conservative molecular markers (e.g., 16S rRNA) coupled with insufficient population-level sampling hindered the study of intra-species genetic diversity and speciation in cyanobacteria. We used phylogenomics and a population genomic approach to investigate the extent of local genomic diversity and the mechanisms underlying sympatric speciation of Laspinema thermale. We found two cryptic lineages of Laspinema. The lineages were highly genetically diverse, with recombination occurring more frequently within than between them. That suggests the existence of a barrier to gene flow, which further maintains divergence. Genomic regions of high population differentiation harbored genes associated with possible adaptations to high/low light conditions and stress stimuli, although with a weak diversifying selection. Overall, the diversification of Laspinema species might have been affected by both genomic and ecological processes.
- Publikační typ
- časopisecké články MeSH
A high degree of morphological variability is expressed between the ornately sculptured siliceous scales formed by species in the chrysophycean genus, Synura. In this study, we aimed to uncover the general principles and trends underlying the evolution of scale morphology in this genus. We assessed the relationships among thirty extant Synura species using a robust molecular analysis that included six genes, coupled with morphological characterization of the species-specific scales. The analysis was further enriched with addition of morphological information from fossil specimens and by including the unique modern species, Synura punctulosa. We inferred the phylogenetic position of the morphologically unique S. punctulosa, to be an ancient Synura lineage related to S. splendida in the section Curtispinae. Some morphological traits, including development of a keel or a labyrinth ribbing pattern on the scale, appeared once in evolution, whereas other structures, such as a hexagonal meshwork pattern, originated independently several times over geologic time. We further uncovered numerous construction principles governing scale morphology and evolution, as follows: (i) scale roundness and pore diameter decreased during evolution; (ii) elongated scales became strengthened by a higher number of struts or ribs; (iii) as a consequence of scale biogenesis, scales with spines possessed smaller basal holes than scales with a keel and; and (iv) the keel area was proportional to scale area, indicating its potential value in strengthening the scale against breakage.
BACKGROUND AND AIMS: While nuclear DNA content variation and its phenotypic consequences have been well described for animals, vascular plants and macroalgae, much less about this topic is known regarding unicellular algae and protists in general. The dearth of data is especially pronounced when it comes to intraspecific genome size variation. This study attempts to investigate the extent of intraspecific variability in genome size and its adaptive consequences in a microalgal species. METHODS: Propidium iodide flow cytometry was used to estimate the absolute genome size of 131 strains (isolates) of the golden-brown alga Synura petersenii (Chrysophyceae, Stramenopiles), identified by identical internal transcribed spacer (ITS) rDNA barcodes. Cell size, growth rate and genomic GC content were further assessed on a sub-set of strains. Geographic location of 67 sampling sites across the Northern hemisphere was used to extract climatic database data and to evaluate the ecogeographical distribution of genome size diversity. KEY RESULTS: Genome size ranged continuously from 0.97 to 2.02 pg of DNA across the investigated strains. The genome size was positively associated with cell size and negatively associated with growth rate. Bioclim variables were not correlated with genome size variation. No clear trends in the geographical distribution of strains of a particular genome size were detected, and strains of different genome size occasionally coexisted at the same locality. Genomic GC content was significantly associated only with genome size via a quadratic relationship. CONCLUSIONS: Genome size variability in S. petersenii was probably triggered by an evolutionary mechanism operating via gradual changes in genome size accompanied by changes in genomic GC content, such as, for example, proliferation of transposable elements. The variation was reflected in cell size and relative growth rate, possibly with adaptive consequences.
We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.
- MeSH
- fylogeneze MeSH
- Heterokontophyta * genetika MeSH
- sekvenční analýza DNA MeSH
- sladká voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Kanada MeSH
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.
Mats of the green alga Trentepohlia, a genus widely distributed in the tropics as well as temperate regions, have always been perceived as homogeneous (i.e., formed by only one species). As such, their general nature and specific feature play a supportive role in the species delimitation. However, the presence of morphologically dissimilar thalli was observed under the light microscope and when cultivating a piece of a single mat. To address this, we performed DNA cloning of the rbcL gene on mat fragments of T. abietina, T. annulata, T. jolithus and T. umbrina sampled in Europe to reveal if they are composed of one or more species. We revealed that more Trentepohlia haplotypes may coexist in a single mat. In consideration of this, we conclude that the use of material isolated in unialgal culture will be almost mandatory for a taxonomic reassessment of this complicated genus. Another direct implication of this problem is that herbarium specimens consisting of field-collected material should not be used for direct sequencing. We further hypothesize the reasons why multiple haplotypes of Trentepohlia occur more frequently in the tuft-like mats. Possibly, fragments and/or cells of other microalgae, including other species of Trentepohlia, might be retained in such mats more easily than in the crustose trentepohlialean mats.
- MeSH
- Chlorophyta * MeSH
- DNA MeSH
- fylogeneze MeSH
- genetická heterogenita * MeSH
- klonování DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
The evolution of phenotypes is highly understudied in protists, due to the dearth of morphological characters, missing fossil record, and/or unresolved phylogeny in the majority of taxa. The chrysophyte genus Mallomonas (Stramenopiles) forms species-specific silica scales with extraordinary diversity of their ornamentation. In this paper, we molecularly characterized three additional species to provide an updated phylogeny of 43 species, and combined this with evaluations of 24 morphological traits. Using phylogenetic comparative methods, we evaluated phylogenetic signal in traits, reconstructed the trait evolution, and compared the overall phylogenetic and morphological diversity. The majority of traits showed strong phylogenetic signal and mostly dynamic evolution. Phylogenetic relatedness was often reflected by the phenotypic similarity. Both V-rib and dome are very conservative structures that are presumably involved in precise scale overlap and bristle attachment, respectively. Based on modern species, it seems the dome firstly appeared on apical and/or caudal scales, and only later emerged on body scales. Bristle was presumably present in the common ancestor and gradually elongated ever since. However, most other morphological traits readily changed during the evolution of Mallomonas.
The view of lichens as a symbiosis only between a mycobiont and a photobiont has been challenged by discoveries of diverse associated organisms. Specific basidiomycete yeasts in the cortex of a range of macrolichens were hypothesized to influence the lichens' phenotype. The present study explores the occurrence and diversity of cystobasidiomycete yeasts in the lichen genus Cladonia. We obtained seven cultures and 56 additional sequences using specific primers from 27 Cladonia species from all over Europe and performed phylogenetic analyses based on ITS, LSU and SSU rDNA loci. We revealed yeast diversity distinct from any previously reported. Representatives of Cyphobasidiales, Microsporomycetaceae and of an unknown group related to Symmetrospora have been found. We present evidence that the Microsporomycetaceae contains mainly lichen-associated yeasts. Lichenozyma pisutiana is circumscribed here as a new genus and species. We report the first known associations between cystobasidiomycete yeasts and Cladonia (both corticate and ecorticate), and find that the association is geographically widespread in various habitats. Our results also suggest that a great diversity of lichen associated yeasts remains to be discovered.
- MeSH
- Basidiomycota klasifikace genetika izolace a purifikace fyziologie MeSH
- ekosystém MeSH
- fylogeneze MeSH
- lišejníky mikrobiologie fyziologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Ecological preferences, partner compatibility, or partner availability are known to be important factors shaping obligate and intimate lichen symbioses. We considered a complex of Cladonia species, traditionally differentiated by the extent of sexual reproduction and the type of vegetative propagules, to assess if the reproductive and dispersal strategies affect mycobiont-photobiont association patterns. In total 85 lichen thalli from 72 European localities were studied, two genetic markers for both Cladonia mycobionts and Asterochloris photobionts were analyzed. Variance partitioning analysis by multiple regression on distance matrices was performed to describe and partition variance in photobiont genetic diversity. Asexually reproducing Cladonia in our study were found to be strongly specific to their photobionts, associating with only two closely related Asterochloris species. In contrast, sexually reproducing lichens associated with seven unrelated Asterochloris lineages, thus being photobiont generalists. The reproductive mode had the largest explanatory power, explaining 44% of the total photobiont variability. Reproductive and dispersal strategies are the key factors shaping photobiont diversity in this group of Cladonia lichens. A strict photobiont specialisation observed in two studied species may steer both evolutionary flexibility and responses to ecological changes of these organisms, and considerably limit their distribution ranges.
- MeSH
- Ascomycota klasifikace MeSH
- biodiverzita * MeSH
- Chlorophyta klasifikace genetika MeSH
- fylogeneze MeSH
- lišejníky klasifikace genetika MeSH
- rozmnožování MeSH
- šíření semen fyziologie MeSH
- symbióza * MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH