We previously demonstrated beneficial effects of 22 h of hyperoxia following near-lethal porcine hemorrhagic shock, whereas therapeutic hypothermia was detrimental. Therefore, we investigated whether shorter exposure to hyperoxia (12 h) would still improve organ function, and whether 12 h of hypothermia with subsequent rewarming could avoid deleterious effects after less severe hemorrhagic shock.Twenty-seven anesthetized and surgically instrumented pigs underwent 3 h of hemorrhagic shock by removal of 30% of the blood volume and titration of the mean arterial blood pressure (MAP) to 40 mm Hg. Post-shock, pigs were randomly assigned to control, hyperoxia (FIO2 100% for 12 h) or hypothermia group (34°C core temperature for 12 h with subsequent rewarming). Before, at the end of shock, after 12 and 23 h of resuscitation, data sets comprising hemodynamics, blood gases, and parameters of inflammation and organ function were acquired. Postmortem, kidney samples were collected for immunohistochemistry and western blotting.Hyperoxia exerted neither beneficial nor detrimental effects. In contrast, mortality in the hypothermia group was significantly higher compared with controls (67% vs. 11%). Hypothermia impaired circulation (MAP 64 (57;89) mm Hg vs. 104 (98; 114) mm Hg) resulting in metabolic acidosis (lactate 11.0 (6.6;13.6) mmol L vs. 1.0 (0.8;1.5) mmol L) and reduced creatinine clearance (26 (9;61) mL min vs. 77 (52;80) mL min) compared to the control group after 12 h of resuscitation. Impaired kidney function coincided with increased renal 3-nitrotyrosine formation and extravascular albumin accumulation.In conclusion, hyperoxia proved to be safe during resuscitation from hemorrhagic shock. The lacking organ-protective effects of hyperoxia compared to resuscitation from near-lethal hemorrhage suggest a dependence of the effectiveness of hyperoxia from shock severity. In line with our previous report, therapeutic hypothermia (and rewarming) was confirmed to be detrimental most likely due to vascular barrier dysfunction.
- MeSH
- analýza krevních plynů MeSH
- hemodynamika fyziologie MeSH
- hemoragický šok metabolismus terapie MeSH
- hyperoxie metabolismus terapie MeSH
- oxidační stres fyziologie MeSH
- prasata MeSH
- synthasa oxidu dusnatého, typ II metabolismus MeSH
- terapeutická hypotermie MeSH
- tyrosin analogy a deriváty metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Investigation of the effects of hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease. DESIGN: Prospective, controlled, randomized trial. SETTING: University animal research laboratory. SUBJECTS: Nineteen hypercholesterolemic pigs with preexisting coronary artery disease. INTERVENTIONS: Anesthetized, mechanically ventilated, and surgically instrumented pigs underwent 3 hours of hemorrhagic shock (removal of 30% of the calculated blood volume and subsequent titration of mean arterial blood pressure ≈40 mm Hg). Postshock resuscitation (48 hr) comprised retransfusion of shed blood, crystalloids (balanced electrolyte solution), and norepinephrine support. Pigs were randomly assigned to "control" (FIO2 0.3, adjusted for arterial oxygen saturation ≥ 90%) and "hyperoxia" (FIO2 1.0 for 24 hr) groups. MEASUREMENTS AND MAIN RESULTS: Before, at the end of shock and every 12 hours of resuscitation, datasets comprising hemodynamics, calorimetry, blood gases, cytokines, and cardiac and renal function were recorded. Postmortem, organs were sampled for immunohistochemistry, western blotting, and mitochondrial high-resolution respirometry. Survival rates were 50% and 89% in the control and hyperoxia groups, respectively (p = 0.077). Apart from higher relaxation constant τ at 24 hours, hyperoxia did not affect cardiac function. However, troponin values were lower (2.2 [0.9-6.2] vs 6.9 [4.8-9.8] ng/mL; p < 0.05) at the end of the experiment. Furthermore, hyperoxia decreased cardiac 3-nitrotyrosine formation and increased inducible nitric oxide synthase expression. Plasma creatinine values were lower in the hyperoxia group during resuscitation coinciding with significantly improved renal mitochondrial respiratory capacity and lower 3-nitrotyrosine formation. CONCLUSIONS: Hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease reduced renal dysfunction and cardiac injury, potentially resulting in improved survival, most likely due to increased mitochondrial respiratory capacity and decreased oxidative and nitrosative stress. Compared with our previous study, the present results suggest a higher benefit of hyperoxia in comorbid swine due to an increased susceptibility to hemorrhagic shock.
- MeSH
- analýza krevních plynů MeSH
- cytokiny metabolismus MeSH
- funkční vyšetření srdce MeSH
- hemodynamika MeSH
- hemoragický šok epidemiologie mortalita patofyziologie terapie MeSH
- hypercholesterolemie epidemiologie MeSH
- hyperoxie patofyziologie MeSH
- krevní tlak MeSH
- náhodné rozdělení MeSH
- nemoci koronárních tepen epidemiologie MeSH
- prasata MeSH
- prospektivní studie MeSH
- resuscitace metody MeSH
- vyšetření funkce ledvin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Hemorrhagic shock-induced tissue hypoxia induces hyperinflammation, ultimately causing multiple organ failure. Hyperoxia and hypothermia can attenuate tissue hypoxia due to increased oxygen supply and decreased demand, respectively. Therefore, we tested the hypothesis whether mild therapeutic hypothermia and hyperoxia would attenuate postshock hyperinflammation and thereby organ dysfunction. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Thirty-six Bretoncelles-Meishan-Willebrand pigs of either gender. INTERVENTIONS: After 4 hours of hemorrhagic shock (removal of 30% of the blood volume, subsequent titration of mean arterial pressure at 35 mm Hg), anesthetized and instrumented pigs were randomly assigned to "control" (standard resuscitation: retransfusion of shed blood, fluid resuscitation, norepinephrine titrated to maintain mean arterial pressure at preshock values, mechanical ventilation titrated to maintain arterial oxygen saturation > 90%), "hyperoxia" (standard resuscitation, but FIO2, 1.0), "hypothermia" (standard resuscitation, but core temperature 34°C), or "combi" (hyperoxia plus hypothermia) (n = 9 each). MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of and 12 and 22 hours after hemorrhagic shock, we measured hemodynamics, blood gases, acid-base status, metabolism, organ function, cytokine production, and coagulation. Postmortem kidney specimen were taken for histological evaluation, immunohistochemistry (nitrotyrosine, cystathionine γ-lyase, activated caspase-3, and extravascular albumin), and immunoblotting (nuclear factor-κB, hypoxia-inducible factor-1α, heme oxygenase-1, inducible nitric oxide synthase, B-cell lymphoma-extra large, and protein expression of the endogenous nuclear factor-κB inhibitor). Although hyperoxia alone attenuated the postshock hyperinflammation and thereby tended to improve visceral organ function, hypothermia and combi treatment had no beneficial effect. CONCLUSIONS: During resuscitation from near-lethal hemorrhagic shock, hyperoxia attenuated hyperinflammation, and thereby showed a favorable trend toward improved organ function. The lacking efficacy of hypothermia was most likely due to more pronounced barrier dysfunction with vascular leakage-induced circulatory failure.
- MeSH
- analýza krevních plynů MeSH
- cytokiny metabolismus MeSH
- hemodynamika MeSH
- hemokoagulace fyziologie MeSH
- hemoragický šok patofyziologie terapie MeSH
- hyperoxie * MeSH
- imunoblotting MeSH
- imunohistochemie MeSH
- ledviny patologie MeSH
- náhodné rozdělení MeSH
- prasata MeSH
- prospektivní studie MeSH
- resuscitace metody MeSH
- tekutinová terapie MeSH
- terapeutická hypotermie metody MeSH
- umělé dýchání MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In 2006, Critical Care provided important and clinically relevant research data in the field of multiple organ failure, sepsis, and shock. This review summarizes the results of the experimental studies and clinical trials and discusses them in the context of the relevant scientific and clinical background.