In this comparative study, six causality detection methods were compared, namely, the Granger vector autoregressive test, the extended Granger test, the kernel version of the Granger test, the conditional mutual information (transfer entropy), the evaluation of cross mappings between state spaces, and an assessment of predictability improvement due to the use of mixed predictions. Seven test data sets were analyzed: linear coupling of autoregressive models, a unidirectional connection of two Hénon systems, a unidirectional connection of chaotic systems of Rössler and Lorenz type and of two different Rössler systems, an example of bidirectionally connected two-species systems, a fishery model as an example of two correlated observables without a causal relationship, and an example of mediated causality. We tested not only 20000 points long clean time series but also noisy and short variants of the data. The standard and the extended Granger tests worked only for the autoregressive models. The remaining methods were more successful with the more complex test examples, although they differed considerably in their capability to reveal the presence and the direction of coupling and to distinguish causality from mere correlation.
- MeSH
- časové faktory MeSH
- kauzalita MeSH
- systémová analýza MeSH
- teoretické modely * MeSH
- Publikační typ
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Using several methods for detection of causality in time series, we show in a numerical study that coupled chaotic dynamical systems violate the first principle of Granger causality that the cause precedes the effect. While such a violation can be observed in formal applications of time series analysis methods, it cannot occur in nature, due to the relation between entropy production and temporal irreversibility. The obtained knowledge, however, can help to understand the type of causal relations observed in experimental data, namely, it can help to distinguish linear transfer of time-delayed signals from nonlinear interactions. We illustrate these findings in causality detected in experimental time series from the climate system and mammalian cardio-respiratory interactions.
- Publikační typ
- časopisecké články MeSH