BACKGROUND: Mobile Ecological Momentary Assessment (EMA) is increasingly used to gather intensive, longitudinal data on behavioral nutrition, physical activity and sedentary behavior and their underlying determinants. However, a relevant concern is the risk of non-random non-compliance with mobile EMA protocols, especially in older adults. This study aimed to examine older adults' compliance with mobile EMA in health behavior studies according to participant characteristics, and prompt timing, and to provide recommendations for future EMA research. METHODS: Data of four intensive longitudinal observational studies employing mobile EMA to understand health behavior, involving 271 community-dwelling older adults (M = 71.8 years, SD = 6.8; 52% female) in Flanders, were pooled. EMA questionnaires were prompted by a smartphone application during specific time slots or events. Data on compliance (i.e. information whether a participant answered at least one item following the prompt), time slot (morning, afternoon or evening) and day (week or weekend day) of each prompt were extracted from the EMA applications. Participant characteristics, including demographics, body mass index, and smartphone ownership, were collected via self-report. Descriptive statistics of compliance were computed, and logistic mixed models were run to examine inter- and intrapersonal variability in compliance. RESULTS: EMA compliance averaged 77.5%, varying from 70.0 to 86.1% across studies. Compliance differed among subgroups and throughout the day. Age was associated with lower compliance (OR = 0.96, 95%CI = 0.93-0.99), while marital/cohabiting status and smartphone ownership were associated with higher compliance (OR = 1.83, 95%CI = 1.21-2.77, and OR = 4.43, 95%CI = 2.22-8.83, respectively). Compliance was lower in the evening than in the morning (OR = 0.82, 95%CI = 0.69-0.97), indicating non-random patterns that could impact study validity. CONCLUSIONS: The findings of this study shed light on the complexities surrounding compliance with mobile EMA protocols among older adults in health behavior studies. Our analysis revealed that non-compliance within our pooled dataset was not completely random. This non-randomness could introduce bias into study findings, potentially compromising the validity of research findings. To address these challenges, we recommend adopting tailored approaches that take into account individual characteristics and temporal dynamics. Additionally, the utilization of Directed Acyclic Graphs, and advanced statistical techniques can help mitigate the impact of non-compliance on study validity.
- MeSH
- adherence pacienta * MeSH
- chytrý telefon MeSH
- cvičení * MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- longitudinální studie MeSH
- mobilní aplikace MeSH
- okamžité posouzení v přirozeném prostředí * MeSH
- průzkumy a dotazníky MeSH
- sedavý životní styl MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- zdravé chování * MeSH
- zpráva o sobě MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: This study aims to assess the suitability of Fitbit devices for real-time physical activity (PA) and sedentary behaviour (SB) monitoring in the context of just-in-time adaptive interventions (JITAIs) and event-based ecological momentary assessment (EMA) studies. METHODS: Thirty-seven adults (18-65 years) and 32 older adults (65+) from Belgium and the Czech Republic wore four devices simultaneously for 3 days: two Fitbit models on the wrist, an ActiGraph GT3X+ at the hip and an ActivPAL at the thigh. Accuracy measures included mean (absolute) error and mean (absolute) percentage error. Concurrent validity was assessed using Lin's concordance correlation coefficient and Bland-Altman analyses. Fitbit's sensitivity and specificity for detecting stepping events across different thresholds and durations were calculated compared to ActiGraph, while ROC curve analyses identified optimal Fitbit thresholds for detecting sedentary events according to ActivPAL. RESULTS: Fitbits demonstrated validity in measuring steps on a short time scale compared to ActiGraph. Except for stepping above 120 steps/min in older adults, both Fitbit models detected stepping bouts in adults and older adults with sensitivities and specificities exceeding 87% and 97%, respectively. Optimal cut-off values for identifying prolonged sitting bouts achieved sensitivities and specificities greater than 93% and 89%, respectively. CONCLUSIONS: This study provides practical insights into using Fitbit devices in JITAIs and event-based EMA studies among adults and older adults. Fitbits' reasonable accuracy in detecting short bouts of stepping and SB makes them suitable for triggering JITAI prompts or EMA questionnaires following a PA or SB event of interest.
- Publikační typ
- časopisecké články MeSH