Objectives Sinonasal mucosal melanoma (SNMM) is an extremely rare and challenging sinonasal malignancy with a poor prognosis. Standard treatment involves complete surgical resection, but the role of adjuvant therapy remains unclear. Crucially, our understanding of its clinical presentation, course, and optimal treatment remains limited, and few advancements in improving its management have been made in the recent past. Methods We conducted an international multicenter retrospective analysis of 505 SNMM cases from 11 institutions across the United States, United Kingdom, Ireland, and continental Europe. Data on clinical presentation, diagnosis, treatment, and clinical outcomes were assessed. Results One-, three-, and five-year recurrence-free and overall survival were 61.4, 30.6, and 22.0%, and 77.6, 49.2, and 38.3%, respectively. Compared with disease confined to the nasal cavity, sinus involvement confers significantly worse survival; based on this, further stratifying the T3 stage was highly prognostic ( p < 0.001) with implications for a potential modification to the current TNM staging system. There was a statistically significant survival benefit for patients who received adjuvant radiotherapy, compared with those who underwent surgery alone (hazard ratio [HR] = 0.74, 95% confidence interval [CI]: 0.57-0.96, p = 0.021). Immune checkpoint blockade for the management of recurrent or persistent disease, with or without distant metastasis, conferred longer survival (HR = 0.50, 95% CI: 0.25-1.00, p = 0.036). Conclusions We present findings from the largest cohort of SNMM reported to date. We demonstrate the potential utility of further stratifying the T3 stage by sinus involvement and present promising data on the benefit of immune checkpoint inhibitors for recurrent, persistent, or metastatic disease with implications for future clinical trials in this field.
- Publikační typ
- časopisecké články MeSH
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens.
- Publikační typ
- časopisecké články MeSH