In dynamic scientific fields, two decades can be an eternity, with technical and conceptual advances leading to drastically changed landscapes and paradigms. Noted natural philosopher Ferris Bueller once opined, “Life moves pretty fast. If you don’t look around once in a while, you could miss it”, and at the 20-year anniversary ofBMC Biology, it is worth a “look around” at the field of evolutionary protistology. Things look quite differently today than they did whenBMC Biology was founded.
- MeSH
- biologická evoluce MeSH
- ekologie * MeSH
- Eukaryota * MeSH
- genomika MeSH
- Publikační typ
- dopisy MeSH
The unicellular trypanosomatids belong to the phylum Euglenozoa and all known species are obligate parasites. Distinct lineages infect plants, invertebrates, and vertebrates, including humans. Genome data for marine diplonemids, together with freshwater euglenids and free-living kinetoplastids, the closest known nonparasitic relatives to trypanosomatids, recently became available. Robust phylogenetic reconstructions across Euglenozoa are now possible and place the results of parasite-focused studies into an evolutionary context. Here we discuss recent advances in identifying the factors shaping the evolution of Euglenozoa, focusing on ancestral features generally considered parasite-specific. Remarkably, most of these predate the transition(s) to parasitism, suggesting that the presence of certain preconditions makes a significant lifestyle change more likely.
- MeSH
- biologická evoluce * MeSH
- datové soubory jako téma MeSH
- Euglenozoa klasifikace genetika MeSH
- fylogeneze MeSH
- genom genetika MeSH
- infekce prvoky kmene Euglenozoa parazitologie MeSH
- lidé MeSH
- paraziti klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS: Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS: In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.
- MeSH
- genomika MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- Naegleria fowleri * genetika MeSH
- transkriptom MeSH
- trogocytóza MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. RESULTS: We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. CONCLUSIONS: Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the 'shopping bag' hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.
Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- genom protozoální MeSH
- Kinetoplastida genetika MeSH
- Leishmania genetika fyziologie MeSH
- molekulární evoluce MeSH
- symbióza * MeSH
- Trypanosoma genetika fyziologie MeSH
- Trypanosomatina genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure - the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms.
- MeSH
- cilie genetika metabolismus MeSH
- cytokineze genetika MeSH
- cytoskelet genetika metabolismus MeSH
- flagella genetika metabolismus MeSH
- mikrotubuly genetika MeSH
- protozoální proteiny genetika metabolismus MeSH
- stadia vývoje genetika MeSH
- Trypanosoma brucei brucei genetika růst a vývoj MeSH
- tvar buňky genetika MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In yeast (Saccharomyces cerevisiae) and animals, the sulfhydryl oxidase Erv1 functions with Mia40 in the import and oxidative folding of numerous cysteine-rich proteins in the mitochondrial intermembrane space (IMS). Erv1 is also required for Fe-S cluster assembly in the cytosol, which uses at least one mitochondrially derived precursor. Here, we characterize an essential Erv1 orthologue from the protist Trypanosoma brucei (TbERV1), which naturally lacks a Mia40 homolog. We report kinetic parameters for physiologically relevant oxidants cytochrome c and O(2), unexpectedly find O(2) and cytochrome c are reduced simultaneously, and demonstrate that efficient reduction of O(2) by TbERV1 is not dependent upon a simple O(2) channel defined by conserved histidine and tyrosine residues. Massive mitochondrial swelling following TbERV1 RNA interference (RNAi) provides evidence that trypanosome Erv1 functions in IMS protein import despite the natural absence of the key player in the yeast and animal import pathways, Mia40. This suggests significant evolutionary divergence from a recently established paradigm in mitochondrial cell biology. Phylogenomic profiling of genes also points to a conserved role for TbERV1 in cytosolic Fe-S cluster assembly. Conversely, loss of genes implicated in precursor delivery for cytosolic Fe-S assembly in Entamoeba, Trichomonas, and Giardia suggests fundamental differences in intracellular trafficking pathways for activated iron or sulfur species in anaerobic versus aerobic eukaryotes.
- MeSH
- cytochromy c chemie MeSH
- fylogeneze MeSH
- genový knockdown MeSH
- kinetika MeSH
- kyslík chemie MeSH
- mitochondriální proteiny chemie genetika MeSH
- mitochondrie enzymologie ultrastruktura MeSH
- molekulární evoluce MeSH
- mutageneze cílená MeSH
- oxidace-redukce MeSH
- oxidancia MeSH
- oxidoreduktasy chemie genetika MeSH
- protozoální proteiny chemie genetika MeSH
- RNA interference MeSH
- sbalování proteinů MeSH
- substituce aminokyselin MeSH
- transport proteinů MeSH
- Trypanosoma brucei brucei cytologie enzymologie MeSH
- zduření mitochondrií MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Frataxin is a small conserved mitochondrial protein; in humans, mutations affecting frataxin expression or function result in Friedreich's ataxia. Much of the current understanding of frataxin function comes from informative studies with yeast models, but considerable debates remain with regard to the primary functions of this ubiquitous protein. We exploit the tractable reverse genetics of Trypanosoma brucei in order to specifically consider the importance of frataxin in an early branching lineage. Using inducible RNAi, we show that frataxin is essential in T. brucei and that its loss results in reduced activity of the marker Fe-S cluster-containing enzyme aconitase in both the mitochondrion and cytosol. Activities of mitochondrial succinate dehydrogenase and fumarase also decreased, but the concentration of reactive oxygen species increased. Trypanosomes lacking frataxin also exhibited a low mitochondrial membrane potential and reduced oxygen consumption. Crucially, however, iron did not accumulate in frataxin-depleted mitochondria, and as T. brucei frataxin does not form large complexes, it suggests that it plays no role in iron storage. Interestingly, RNAi phenotypes were ameliorated by expression of frataxin homologues from hydrogenosomes of another divergent protist Trichomonas vaginalis. Collectively, the data suggest trypanosome frataxin functions primarily only in Fe-S cluster biogenesis and protection from reactive oxygen species.
- MeSH
- buněčné linie MeSH
- eukaryotické buňky fyziologie klasifikace MeSH
- exprese genu MeSH
- fenotyp MeSH
- financování organizované MeSH
- fylogeneze MeSH
- lidé MeSH
- mitochondriální proteiny genetika chemie metabolismus MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- prokaryotické buňky fyziologie klasifikace MeSH
- proteiny obsahující železo a síru genetika chemie metabolismus MeSH
- proteiny vázající železo genetika chemie metabolismus MeSH
- protozoální proteiny genetika chemie metabolismus MeSH
- RNA interference MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- Trichomonas genetika chemie klasifikace metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH