Cerebellar extinction lesions can manifest themselves with cerebellar motor and cerebellar cognitive affective syndromes. For investigation of the functions of the cerebellum and the pathogenesis of cerebellar diseases, particularly hereditary neurodegenerative cerebellar ataxias, various cerebellar mutant mice are used. The Lurcher mouse is a model of selective olivocerebellar degeneration with early onset and rapid progress. These mice show both motor deficits as well as cognitive and behavioral changes i.e., pathological phenotype in the functional domains affected in cerebellar patients. Therefore, Lurcher mice might be considered as a tool to investigate the mechanisms of functional impairments caused by cerebellar degenerative diseases. There are, however, limitations due to the particular features of the neurodegenerative process and a lack of possibilities to examine some processes in mice. The main advantage of Lurcher mice would be the expected absence of significant neuropathologies outside the olivocerebellar system that modify the complex behavioral phenotype in less selective models. However, detailed examinations and further thorough validation of the model are needed to verify this assumption.
- MeSH
- cerebelární ataxie genetika patofyziologie patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- mozeček patologie patofyziologie MeSH
- myši - mutanty neurologické MeSH
- myši MeSH
- nemoci mozečku * patologie patofyziologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The discipline of affective neuroscience is concerned with the neural bases of emotion and mood. The past decades have witnessed an explosion of research in affective neuroscience, increasing our knowledge of the brain areas involved in fear and anxiety. Besides the brain areas that are classically associated with emotional reactivity, accumulating evidence indicates that both the vestibular and cerebellar systems are involved not only in motor coordination but also influence both cognition and emotional regulation in humans and animal models. The cerebellar and the vestibular systems show the reciprocal connection with a myriad of anxiety and fear brain areas. Perception anticipation and action are also major centers of interest in cognitive neurosciences. The cerebellum is crucial for the development of an internal model of action and the vestibular system is relevant for perception, gravity-related balance, navigation and motor decision-making. Furthermore, there are close relationships between these two systems. With regard to the cooperation between the vestibular and cerebellar systems for the elaboration and the coordination of emotional cognitive and visceral responses, we propose that altering the function of one of the systems could provoke internal model disturbances and, as a result, anxiety disorders followed potentially with depressive states.
- MeSH
- depresivní poruchy patofyziologie MeSH
- lidé MeSH
- mozeček patofyziologie MeSH
- nervové dráhy patofyziologie MeSH
- nuclei vestibulares patofyziologie MeSH
- úzkostné poruchy patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Both humans and laboratory animals suffering from cerebellar lesions exhibit cognitive as well as many emotional and behavioral abnormalities. These latter have been already observed in the cerebellar mutant mice currently used to highlight some aspect of autism spectrum disorders. The aim of this study was to investigate the influence of cerebellar-related stress response abnormalities on spatial learning and memory. Cerebellar-deficient Lurcher mutant mice were exposed to water environment without active escape possibility and then tested for spatial learning in the Morris water maze. As a marker of stress intensity we measured corticosterone in urine. Finally, the volumes of individual components of the adrenal gland were estimated. Though having spatial navigation deficit in the water maze, Lurcher mice preserved a substantial residuum of learning capacity. Lurcher mutants had a higher increase of corticosterone level after exposure to the water environment than wild type mice. We did not observe any decrease of this physiological stress marker between the start and the end of the spatial navigation task, despite significant improvement of behavioral performances. Furthermore, zona fasciculata and zona reticularis of the adrenal cortex as well as the adrenal medulla were larger in Lurcher mice, reflecting high stress reactivity. We conclude that for both genotypes water exposure was a strong stressor and that there was no habituation to the experiment independently to the increasing controllability of the stressor (e.g. ability to find the escape platform). Based on these findings, we suggest that the enhanced stress response to water exposure is not the main factor explaining the spatial deficits in these cerebellar mutant mice.
- MeSH
- fyziologický stres fyziologie MeSH
- kortikosteron moč MeSH
- myši - mutanty neurologické MeSH
- myši MeSH
- nadledviny patologie MeSH
- prostorová navigace fyziologie MeSH
- velikost orgánu fyziologie MeSH
- vnímání prostoru fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH