Na konci března roku 2024 byl v zahradním jezírku v areálu rodinného domu v Borovanech v jižních Čechách zaznamenán výskyt larev všech larválních stádií (v množství 15 jedinců na dm3) a několik kukel, které byly později, na základě vylíhlých imag, identifikovány jako invazní druh Aedes koreicus. Vzhledem k velmi časnému nálezu larev, jejich množství i stáří můžeme hovořit o prvním průkazu přezimování invazního druhu komára rodu Aedes na našem území.
At the end of March 2024 in Borovany in South Bohemia in a garden pond in the vicinity of a private house a number of larvae (15 individuals per dm3) and some pupae were found which were later, based on hatched imagery, identified as the invasive mosquito species Aedes koreicus. Given the early finding of larvae, their number and age, we can conclude that this is the first record of the invasive genus Aedes overwintering in our area.
- MeSH
- Aedes * klasifikace růst a vývoj MeSH
- klimatické změny MeSH
- komáří přenašeči MeSH
- lidé MeSH
- nemoci přenášené komáry MeSH
- zavlečené druhy MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Česká republika MeSH
Bioelektrická impedanční analýza (BIA) je moderní a jednoduchou metodou pro odhad tělesného složení. Tato metoda se snaží nahradit výrazně dražší a náročnější způsoby tělesné analýzy v podobě hydrodenzitometrie a duální rentgenové absorpciometrie. Její podstatou jsou predikční rovnice, které na základě znalosti elektrické impedance těla a základních tělesných parametrů určují poměrné zastoupení jednotlivých tělesných tkání. V současné době se BIA nejvíce uplatňuje na obezitologických a dietologických pracovištích, jako podpůrný nástroj při redukci tělesné hmotnosti. Díky diagnostice a charakteristice nedostatečné výživy a hydratačních poruch ale nalézá své uplatnění také v klinické praxi. Úspěšně a účelně může být nasazena v gastroenterologii, endokrinologii, pediatrii, nefrologii a dalších lékařských odvětvích.
Body composition assessment is useful in a variety of clinical settings for obtaining information about nutritional condition and the status of body fluid compartments. Bioelectrical impedance analysis is an attractive technique for this purpose because it is safe, non-invasive, low cost and easy to use. For bioelectric impedance analysis are most important correct measuring techniques and first of all correct prediction equations. Bioelectrical impedance analysis measures the impedance or resistance the flow of an electric current through the body fluids contained mainly in the lean and fat tissue. Prediction equations, previously generated by correlating impedance measures against an independent estimate of total body water or fat-free mass, may be used consequently to convert a measured impedance to a corresponding estimate of total body water or fat-free mass indexes. Other body composition parameters are then calculated from this indexes using an assumed hydration fraction for tissues. One potential limitation of the BIA approach is the confidence on regression models, derived in restricted samples of testing human subjects, which restricts the usefulness of the derived model in other patients who differ from this original sample in which the model was developed. If BIA is to gain acceptance in clinical diagnosis and evaluation of therapeutic interventions, further efforts will be needed to ensure more fully the validity, sensitivity, and specificity of biological parameters estimated with the new BIA approaches, and to establish the new prognostic values of the BIA estimates of body composition.
- MeSH
- distribuce tělesného tuku metody MeSH
- elektrická impedance diagnostické užití MeSH
- financování organizované MeSH
- hodnocení biomedicínských technologií metody využití MeSH
- lidé MeSH
- obezita diagnóza MeSH
- složení těla fyziologie MeSH
- statistika jako téma metody MeSH
- tělesná hmotnost fyziologie MeSH
- Check Tag
- lidé MeSH
Results obtained by the modern automatic blood pressure (BP) monitors using oscillometric method [5] are highly dependent on conditions of cardiovascular system of the monitored person. Especially, with people who suffer from cardiovascular diseases (e.g. atherosclerosis) the resulting values differ significantly from those measured by the traditional auscultation method. A reasonable solution for improvement of quality of oscillometric method could be a sophisticated intelligent BP measuring system which applies for evaluation of BP more complex approach taking into account the monitored person's condition of patient cardiovascular system (CS) i.e. the hemodynamic parameters of CS (e.g. heart rate, stroke volume, total peripheral resistance, systemic arterial compliance, pulse wave velocity, augmentation index etc.). Such a system has to be based on appropriate models of the considered diseases which are validated on real life data. For that purpose, we have started to build a database of real-life oscillometric pulsations waveforms (OPW) complemented by the values of "auscultation" blood pressure measurements and additional relevant information about the considered patients (age, sex, etc.) as well as their diagnosis. This data collection requires a special HW device for measurement of the OPW--we have developed such a device and it has been validated in Czech Certified Metrological Centre. Our OPW monitor is connected through the T-pieces and tubes to the cuff, mercury sphygmomanometer and automatic "oscillometric" blood pressure monitor.
- MeSH
- ambulantní monitorování krevního tlaku metody přístrojové vybavení MeSH
- databáze faktografické MeSH
- financování organizované MeSH
- hemodynamika MeSH
- kardiovaskulární nemoci patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- monitory krevního tlaku MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- triáda sportovkyň MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- srovnávací studie MeSH
Blood is carried from the heart to all parts of your body in vessels called arteries. Blood pressure is the force of the blood pushing against the walls of the arteries. Each time the heart beats (about 60 to 70 times a minute at rest), it pumps out blood into the arteries with different value of systolic pressure SP (highest blood pressure when the heart beats) and different value of diastolic pressure DP (lowest blood pressure when the heart relaxes) [3]. Values of SP and DP change during the whole day with dependence on person’s physical and psychical activity. Accuracy of measurement with the modern automatic blood pressure (BP) monitors using oscillometric method is highly depended on condition of cardiovascular system of the monitored person [1]. Especially, with people who suffer from cardiovascular diseases (e.g. arteriosclerosis) the resulting accuracy is much lower when compared to auscultation method. A reasonable solution for improvement of quality of oscillometric method could be an intelligent universal measuring system for evaluation of BP taking into account condition of patient cardiovascular system (CS) of monitored person i.e. the hemodynamics parameters of CS (e.g. heart rate, stroke volume, total peripheral resistance, systemic arterial compliance). Such a system has to be based on an appropriate model of the considered diseases. To create the models, it is very important to establish a database of oscillometric pulsations waveforms (OPW) complemented by the values of “auscultation” blood pressure and information about patients (age, sex, etc.) as well as their diagnosis. This requires a special HW device for measurement of the OPW – we have developed such a device and it has been validated in Czech Certified Metrological Centre, its accuracy is ± 0.5 mmHg in the measuring range 0 to 300 mmHg. We have introduced the concept of oscillometric pulsations waveform (OPW) database that allows testing of oscillometric algorithms for healthy people and mainly for people whose cardiovascular system is not in standard state (arteriosclerosis etc.). The concept is based on oscillometric data retrieving during cuff deflation and on reference BP measurements by auscultation as in [2]. Together with the data, oscillometric pulsations and cuff pressure are saved into the database. For records of OPW we have developed a special HW device that consists of an arm cuff, a pressure sensor, two regulation valves, batteries and electronic circuits. The device can be controlled from PC by a special SW. The connection with the PC is via USB port. The microcontroller controls the pneumatic and the electronic circuits. Cuff pressure is converted into analog voltage by pressure sensor (Piezoresistive Bridge). The analog voltage is amplified by an amplifier TLV2422 and the amplified cuff pressure signal is then separated into 2 channels by a hi-pass filter. Channel 1 is cuff pressure signal (0-300 mm Hg) and channel 2 represents amplified and filtered cuff pulsations (OPW). The 2 signals are digitized by a 12-bit A/D converter in microcontroller ADuC814 with sampling frequency of 200 Hz. The deflation of the cuff is controlled by the regulations valves. The microcontroller communicates with the notebook computer via FTDI chip. Our OPW monitor is connected through the T-pieces and tubes to the cuff, mercury sphygmomanometer and automatic oscillometric blood pressure monitor. Auscultation values are measured by educated staff. Cuff inflation is controlled by microcontroller of the monitor. Then we can directly compare oscillometric and reference (auscultation) method. Moreover, we exactly know the OPW. Nowadays, we have already collected 950 OPW records of 250 people. There are mainly people older than 60 years in the group and we have tried several algorithms (designed in MATLAB ver. 7.00) for evaluation of systolic and diastolic BP [3] and others hemodynamics parameters of the cardiovascular system (mean arterial pressure, heart rate etc.). We have compared values of BP measured by mercury sphygmomanometer and the commercial oscillometric monitor and we have got less than 80% of the measurements results in range of ± 5 mmHg for systolic and diastolic pressure. In more than 20% for both pressures the differences between oscillometric and reference method were greater than ± 5 mmHg. Difference more than -5 mmHg as well as + 5 mmHg was distributed approximately similar. This is a strong motivation for the creation of our database. We have begun apply on measured values some methods of artificial intelligence (AI), especially data mining with system WEKA [5]. We used correlation and searched some association rules. We validated results of standard statistical analysis but we did not find any other strong rules in the data. Nowadays we plan apply these statistical and AI methods directly on measured oscillometric pulsations. This pilot project could be very useful for development of new blood pressure measurement (BPM) methods and also for determination of correct BPM for each group of cardiovascular condition of patients what can be considerable improvement in medical care and patient satisfaction.