Non-healing wounds are a serious complication in diabetic patients. One of the detrimental factors contributing to limited wound healing is the accumulation of metalloproteinase-9 (MMP-9) in the wound. Selective inhibition of MMP-9 is one of the established therapeutic targets for diabetic wound healing. Here, a functional and biocompatible wound dressing is developed to enable a controlled release of a traceable vector loaded with the antisense siRNA against MMP-9 in the wound. The dressing consists of degradable polymer nanofibers embedded with a vector nanosystem - polymer-coated fluorescent nanodiamonds optimized for the binding of siRNA and colloidal stability of nanodiamond-siRNA complexes in a physiological environment. The developed dressing is tested on murine fibroblasts and also applied to wounds in a diabetic murine model to evaluate its suitability in terms of in vivo toxicity, biological efficacy, and handling. The treatment results in significant local inhibition of MMP-9 and a shortening of the wound healing time. The scar formation in treated diabetic-like mice becomes comparable with that in non-treated diabetes-free mice. Our results suggest that the application of our biocompatible dressing loaded with a non-toxic vector nanosystem is an effective and promising approach to gene therapy of non-healing wounds.
- MeSH
- aplikace lokální MeSH
- experimentální diabetes mellitus * chemicky indukované MeSH
- hojení ran * účinky léků MeSH
- malá interferující RNA * chemie MeSH
- matrixová metaloproteinasa 9 * metabolismus MeSH
- myši MeSH
- obvazy MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Úvod: Kardiovaskulární choroby jsou zodpovědné za významnou morbiditu i mortalitu ve společnosti. Užití umělých cévních materiálů je často nezbytnou součástí v rámci chirurgické léčby, ať již je tato radikální nebo paliativní. V současné době dochází k vývoji řady nových biodegradabilních materiálů určených pro tyto účely. Preklinické testování každého nového materiálu je naprosto nezbytné, je prováděno jak in vitro, tak in vivo. Z tohoto důvodu jsou zvířecí experimentální modely nadále nutnou součástí testování před klinickým užitím. Cílem této práce je prezentovat možnosti užití různých zvířecích modelů na poli kardiovaskulární chirurgie a jejich extrapolace do klinické medicíny. Metody: Autoři prezentují jejich obecné zkušenosti s experimentální chirurgií, na jejich podkladě diskutují optimální výběr zvířecího modelu pro testování nových materiálů pro kardiovaskulární chirurgii a stejně tak optimální lokalitu implantace. Výsledky: Jako optimální experimentální zvířecí modely pro testování hemokompatibility a degradability nových materiálů uvádějí autoři modely potkana, králíka a prasete. Intraperitoneální implantace u potkana je snadná a lehce proveditelná procedura, stejně tak jako arteriální bandáž na aortě králíka či prasete. Rovněž karotické tepny jsou dobře využitelné. Bandáž na prasečí pulmonální tepně je již složitější zákrok s četnějšími komplikacemi. Explantované bandážované cévy po předem definované době jsou vhodné pro další mechanické testování ve smyslu biomechanických analýz, např. inflačně-extenzního testu. Závěr: V posledních fázích preklinického testování nových materiálů se nelze nadále obejít bez in-vivo experimentů. Naší snahou je však striktně dodržovat koncept 3R – Replacement, Reduction a Refinement. V tomto smyslu je třeba využít co nejvíce potenciál každého zvířete tak, abychom mohli redukovat počty zvířat.
Introduction: Cardiovascular diseases are responsible for significant morbidity and mortality in the population. Artificial vascular grafts are often essential for surgical procedures in radical or palliative treatment. Many new biodegradable materials are currently under development. Preclinical testing of each new material is imperative, both in vitro and in vivo, and therefore animal experiments are still a necessary part of the testing process before any clinical use. The aim of this paper is to present the options of using various experimental animal models in the field of cardiovascular surgery including their extrapolation to clinical medicine. Methods: The authors present their general experience in the field of experimental surgery. They discuss the selection process of an optimal experimental animal model to test foreign materials for cardiovascular surgery and of an optimal region for implantation. Results: The authors present rat, rabbit and porcine models as optimal experimental animals for material hemocompatibility and degradability testing. Intraperitoneal implantation in the rat is a simple and feasible procedure, as well as aortic banding in the rabbit or pig. The carotid arteries can also be used, as well. Porcine pulmonary artery banding is slightly more difficult with potential complications. The banded vessels, explanted after a defined time period, are suitable for further mechanical testing using biomechanical analyses, for example, the inflation-extension test. Conclusion: An in vivo experiment cannot be avoided in the last phases of preclinical research of new materials. However, we try to strictly observe the 3R concept – Replacement, Reduction and Refinement; in line with this concept, the potential of each animal should be used as much as possible to reduce the number of animals.