The sesquiterpenoid juvenile hormone (JH) is vital to insect development and reproduction. Intracellular JH receptors have recently been established as basic helix-loop-helix transcription factor (bHLH)/PAS proteins in Drosophila melanogaster known as germ cell-expressed (Gce) and its duplicate paralog, methoprene-tolerant (Met). Upon binding JH, Gce/Met activates its target genes. Insects possess multiple native JH homologs whose molecular activities remain unexplored, and diverse synthetic compounds including insecticides exert JH-like effects. How the JH receptor recognizes its ligands is unknown. To determine which structural features define an active JH receptor agonist, we tested several native JHs and their nonnative geometric and optical isomers for the ability to bind the Drosophila JH receptor Gce, to induce Gce-dependent transcription, and to affect the development of the fly. Our results revealed high ligand stereoselectivity of the receptor. The geometry of the JH skeleton, dictated by two stereogenic double bonds, was the most critical feature followed by the presence of an epoxide moiety at a terminal position. The optical isomerism at carbon C11 proved less important even though Gce preferentially bound a natural JH enantiomer. The results of receptor-ligand-binding and cell-based gene activation assays tightly correlated with the ability of different geometric JH isomers to induce gene expression and morphogenetic effects in the developing insects. Molecular modeling supported the requirement for the proper double-bond geometry of JH, which appears to be its major selective mechanism. The strict stereoselectivity of Gce toward the natural hormone contrasts with the high potency of synthetic Gce agonists of disparate chemistries.
- MeSH
- Drosophila melanogaster chemie genetika metabolismus MeSH
- juvenilní hormony chemie metabolismus MeSH
- molekulární modely MeSH
- proteiny Drosophily metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- stereoizomerie MeSH
- transkripční faktory bHLH metabolismus MeSH
- transkripční faktory metabolismus MeSH
- vazba proteinů MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We tested the role of substituents at the C3' and C3'N positions of the taxane molecule to identify taxane derivatives capable of overcoming acquired resistance to paclitaxel. Paclitaxel-resistant sublines SK-BR-3/PacR and MCF-7/PacR as well as the original paclitaxel-sensitive breast cancer cell lines SK-BR-3 and MCF-7 were used for testing. Increased expression of the ABCB1 transporter was found to be involved in the acquired resistance. We tested three groups of taxane derivatives: (1) phenyl group at both C3' and C3'N positions, (2) one phenyl at one of the C3' and C3'N positions and a non-aromatic group at the second position, (3) a non-aromatic group at both C3' and C3'N positions. We found that the presence of phenyl groups at both C3' and C3'N positions is associated with low capability of overcoming acquired paclitaxel resistance compared to taxanes containing at least one non-aromatic substituent at the C3' and C3'N positions. The increase in the ATPase activity of ABCB1 transporter after the application of taxanes from the first group was found to be somewhat higher than after the application of taxanes from the third group. Molecular docking studies demonstrated that the docking score was the lowest, i.e. the highest binding affinity, for taxanes from the first group. It was intermediate for taxanes from the second group, and the highest for taxanes from the third group. We conclude that at least one non-aromatic group at the C3' and C3'N positions of the taxane structure, resulting in reduced affinity to the ABCB1 transporter, brings about high capability of taxane to overcome acquired resistance of breast cancer cells to paclitaxel, due to less efficient transport of the taxane compound out of the cancer cells.
- MeSH
- ABC transportéry genetika metabolismus MeSH
- biologický transport MeSH
- chemorezistence * genetika MeSH
- fytogenní protinádorové látky * chemie metabolismus farmakologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- molekulární struktura MeSH
- nádory prsu * farmakoterapie genetika metabolismus patologie MeSH
- paclitaxel * chemie metabolismus farmakologie MeSH
- proliferace buněk účinky léků MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům genetika metabolismus MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
Human DHRS7 (SDR34C1) is one of insufficiently described enzymes of the short-chain dehydrogenase/reductase superfamily. The members of this superfamily often play an important pato/physiological role in the human body, participating in the metabolism of diverse substrates (e.g. retinoids, steroids, xenobiotics). A systematic approach to the identification of novel, physiological substrates of DHRS7 based on a combination of homology modeling, structure-based virtual screening and experimental evaluation has been used. Three novel substrates of DHRS7 (dihydrotestosterone, benzil and 4,4'-dimetylbenzil) have been described.
Artificial multidomain proteins with enhanced structural and functional properties can be utilized in a broad spectrum of applications. The design of chimeric fusion proteins utilizing protein domains or one-domain miniproteins as building blocks is an important advancement for the creation of new biomolecules for biotechnology and medical applications. However, computational studies to describe in detail the dynamics and geometry properties of two-domain constructs made from structurally and functionally different proteins are lacking. Here, we tested an in silico design strategy using all-atom explicit solvent molecular dynamics simulations. The well-characterized PDZ3 and SH3 domains of human zonula occludens (ZO-1) (3TSZ), along with 5 artificial domains and 2 types of molecular linkers, were selected to construct chimeric two-domain molecules. The influence of the artificial domains on the structure and dynamics of the PDZ3 and SH3 domains was determined using a range of analyses. We conclude that the artificial domains can function as allosteric modulators of the PDZ3 and SH3 domains. Proteins 2016; 84:1358-1374. © 2016 Wiley Periodicals, Inc.
- MeSH
- alosterická regulace MeSH
- Escherichia coli genetika metabolismus MeSH
- exprese genu MeSH
- klonování DNA MeSH
- lidé MeSH
- ligandy MeSH
- peptidy chemie genetika metabolismus MeSH
- protein zonula occludens 1 chemie genetika metabolismus MeSH
- proteinové domény MeSH
- proteinové inženýrství MeSH
- rekombinantní fúzní proteiny chemie genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky * MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH