OBJECTIVE: The PIWIL (P-element induced wimpy testis like protein) subfamily of argonaute proteins is essential for Piwi-interacting RNA (piRNA) biogenesis and their function to silence transposons during germ-line development. Here we explored their presence and regulation in rheumatoid arthritis (RA). METHODS: The expression of PIWIL genes in RA and osteoarthritis (OA) synovial tissues and synovial fibroblasts (SF) was analysed by Real-time PCR, immunofluorescence and Western blot. The expression of piRNAs was quantified by next generation small RNA sequencing (NGS). The regulation of PIWI/piRNAs, proliferation and methylation of LINE-1 after silencing of PIWIL genes were studied. RESULTS: PIWIL2 and 4 mRNA were similarly expressed in synovial tissues and SF from RA and OA patients. However, on the protein level only PIWIL4 was strongly expressed in SF. Using NGS up to 300 piRNAs were identified in all SF without significant differences in expression levels between RA and OASF. Of interest, the analysis of the co-expression of the detected piRNAs revealed a less tightly regulated pattern of piRNA-823, -4153 and -16659 expression in RASF. In RASF and OASF, stimulation with TNFα+IL1β/TLR-ligands further significantly increased the expression levels of PIWIL2 and 4 mRNA and piRNA-16659 was significantly (4-fold) induced upon Poly(I:C) stimulation. Silencing of PIWIL2/4 neither affect LINE-1 methylation/expression nor proliferation of RASF. CONCLUSION: We detected a new class of small regulatory RNAs (piRNAs) and their specific binding partners (PIWIL2/4) in synovial fibroblasts. The differential regulation of co-expression of piRNAs in RASF and the induction of piRNA/Piwi-proteins by innate immune stimulators suggest a role in inflammatory processes.
- MeSH
- Argonaut proteiny genetika metabolismus MeSH
- cytokiny metabolismus MeSH
- dlouhé rozptýlené jaderné elementy MeSH
- fibroblasty patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- osteoartróza genetika metabolismus patologie MeSH
- proteiny genetika metabolismus MeSH
- regulace genové exprese MeSH
- revmatoidní artritida genetika metabolismus patologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- synoviální membrána patologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: To investigate the role of protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in the pathogenesis of rheumatoid arthritis (RA). METHODS: Synovial tissue samples from patients with RA and patients with osteoarthritis (OA) were stained for PTPN2. Synovial fibroblasts were stimulated with tumor necrosis factor (TNF) and interleukin-1β (IL-1β), lipopolysaccharide (LPS), TRAIL, or thapsigargin. The expression of PTPN2 in synovial fibroblasts and peripheral blood mononuclear cells (PBMCs) was analyzed by real-time polymerase chain reaction and Western blotting. Cell death, the release of IL-6 and IL-8, and the induction of autophagy were analyzed after PTPN2 silencing. Methylated DNA immunoprecipitation analysis was used to evaluate DNA methylation-regulated gene expression of PTPN2. RESULTS: PTPN2 was significantly overexpressed in synovial tissue samples from RA patients compared to OA patients. Patients receiving anti-TNF therapy showed significantly reduced staining for PTPN2 compared with patients treated with nonbiologic agents. PTPN2 expression was higher in RA synovial fibroblasts (RASFs) than in OASFs. This differential expression was not regulated by DNA methylation. PTPN2 was further up-regulated after stimulation with TNF, TNF combined with IL-1β, or LPS. There was no significant difference in basal PTPN2 expression in PBMCs from patients with RA, ankylosing spondylitis, or systemic lupus erythematosus or healthy controls. Most interestingly, PTPN2 silencing in RASFs significantly increased the production of the inflammatory cytokine IL-6 but did not affect levels of IL-8. Moreover, functional analysis showed that high PTPN2 levels contributed to the increased apoptosis resistance of RASFs and increased autophagy. CONCLUSION: This is the first study of PTPN2 in RASFs showing that PTPN2 regulates IL-6 production, cell death, and autophagy. Our findings indicate that PTPN2 is linked to the pathogenesis of RA via synovial fibroblasts.
- MeSH
- apoptóza účinky léků MeSH
- autofagie účinky léků MeSH
- biologické přípravky farmakologie MeSH
- fibroblasty účinky léků metabolismus patologie MeSH
- interleukin-1beta farmakologie MeSH
- interleukin-6 metabolismus MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipopolysacharidy farmakologie MeSH
- osteoartróza metabolismus patologie MeSH
- protein TRAIL farmakologie MeSH
- revmatoidní artritida metabolismus patologie MeSH
- senioři MeSH
- synoviální membrána účinky léků metabolismus patologie MeSH
- thapsigargin farmakologie MeSH
- TNF-alfa antagonisté a inhibitory farmakologie MeSH
- tyrosinfosfatasa nereceptorového typu 2 metabolismus MeSH
- upregulace účinky léků MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH