Despite their low concentrations in many aquatic environments, evidence exists to suggest that herbicides do affect non-target organisms. Given that burrowing is a primary life-history trait in crayfish, herbicides could potentially have serious negative effects on these ecologically important freshwater macroinvertebrates. In this study, we exposed the red swamp crayfish Procambarus clarkii to terbuthylazine (a triazine) and metazachlor (a chloroacetanilide) at an environmental concentration of 2.0 μg/L for 28 days, and then observed their burrowing behaviour for two days. The metazachlor-exposed males excavated a greater number of burrows than the other tested groups, with comparable depths and volumes relative to individual specimen weight. The relative depth and volume of female burrows were identical in all groups. The natural habit of female crayfish of constructing deeper burrows than males was marginally significant in the control and META groups but was not significant for relative volume. The hypothesized adverse effects of chronic exposure to real environmental concentrations of herbicides were not documented in terms of either relative depth or volume. However, the increased number of burrows in metazachlor-exposed animals may mean that this invasive species will cause greater damage to embankments and river banks. The mechanisms behind these effects require closer study.
- MeSH
- acetamidy MeSH
- herbicidy * toxicita MeSH
- severní raci * MeSH
- triaziny toxicita MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The effects of chloridazon exposure at concentrations of 2.7 μg/L (maximal real environmental concentration in the Czech Republic), 27 μg/L, 135 μg/L and 270 μg/L on early life stages of marbled crayfish (Procambarus virginalis) were evaluated. Significantly higher glutathione S-transferase activity and reduced glutathione level was observed at all tested concentrations of chloridazon compared with the control. Chloridazon in concentrations 27, 135 and 270 μg/L caused delay ontogenetic development and slower growth. Histopathological changes in hepathopancreas were found in two highest tested concentrations (135 μg/L and 270 μg/L). Crayfish behaviour was not altered in control vs. exposed animals, while the activity parameters tend to decline with increasing chloridazon concentrations.
- MeSH
- pesticidy toxicita MeSH
- pyridaziny toxicita MeSH
- severní raci účinky léků fyziologie MeSH
- testy toxicity * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Methamphetamine (METH), a central nervous system stimulant used as a recreational drug, is frequently found in surface waters at potentially harmful concentrations. To determine effects of long-term exposure to environmentally relevant levels on nontarget organisms, we analysed cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus to acute stress during a 21-day exposure to METH at 1 μg L-1 followed by 14 days depuration. Heart rate and locomotion were recorded over a period of 30 min before and 30 min after exposure to haemolymph of an injured conspecific four times during METH exposure and four times during the depuration phase. Methamphetamine-exposed crayfish showed a weaker cardiac response to stress than was observed in controls during both exposure and depuration phases. Similarly, methamphetamine-exposed crayfish, during METH exposure, showed lower locomotor reaction poststressor application in contrast to controls. Results indicate biological alterations in crayfish exposed to METH at low concentration level, potentially resulting in a shift in interactions among organisms in natural environment.
The effects of the herbicide metazachlor and its major metabolite metazachlor OA at two concentrations, including environmentally relevant concentrations of metazachlor (0.0115 µmol/l and 0.0790 µmol/l) and metazachlor OA (0.0117 µmol/l and 0.0805 µmol/l), respectively, were evaluated on early ontogeny, growth, behaviour, oxidative stress, antioxidant enzyme levels, histology, and mortality of marbled crayfish Procambarus virginalis. Both tested concentrations of metazachlor and metazachlor OA were associated with significantly lower growth and delayed ontogenetic development compared to controls. Exposure of metazachlor at 0.0115 µmol/l and metazachlor OA at 0.0117 µmol/l and 0.0805 µmol/l resulted in significantly lower activity of total superoxide dismutase (SOD), catalase (CAT), glutathione s-transferase (GST), glutathione reductase (GR), and reduced glutathione (GSH) compared with control and resulted in gill anomalies ranging from wall thinning to focal disintegration of branchial structure. Metazachlor at the environmentally relevant concentration of 0.0790 µmol/l was associated with significant alterations of crayfish distance moved and walking speed. The potential risk associated with metazachlor use in agriculture related to effects on non-target aquatic organisms.
- MeSH
- acetamidy metabolismus toxicita MeSH
- antioxidancia metabolismus MeSH
- chemické látky znečišťující vodu toxicita MeSH
- ekotoxikologie MeSH
- embryo nesavčí účinky léků MeSH
- glutathion metabolismus MeSH
- glutathionreduktasa metabolismus MeSH
- hepatopankreas účinky léků patologie MeSH
- herbicidy metabolismus toxicita MeSH
- lokomoce účinky léků MeSH
- oxidační stres účinky léků MeSH
- severní raci účinky léků embryologie růst a vývoj metabolismus MeSH
- superoxiddismutasa metabolismus MeSH
- žábry účinky léků patologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The effects of s-metolachlor chronic exposure at concentrations of 1.1 μg/L (maximal real environmental concentration in the Czech Republic), 11 μg/L (environmental relevant concentration) and 110 μg/L on early life stages of marbled crayfish (Procambarus virginalis) was evaluated under laboratory conditions. All s-metolachlor exposures resulted in higher mortality, delay ontogenetic development with accompanied slower growth and excited behaviour (increase of total distance moved and walking speed). Significantly lower superoxide dismutase, catalase, glutathione S-transferase activity and reduced glutathione level was observed at two higher tested concentrations (11 and 110 μg/L) of s-metolachlor compared with the control. S-metolachlor in concentrations 110 μg/L showed alteration of the tubular system of hepatopancreas including focal disintegration of tubular epithelium and notable reduction in epithelial cells number, especially B-cells. In conclusion, potential risk associated with using of s-metolachlor in agriculture, due to effects on non-target aquatic organisms as documented on early life stages of marbled crayfish in this study, should be taken into account.
- MeSH
- acetamidy toxicita MeSH
- chování zvířat účinky léků MeSH
- hepatopankreas účinky léků patologie MeSH
- herbicidy toxicita MeSH
- severní raci účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pharmaceutically active compounds are major contaminants of aquatic environments that show direct and indirect effects on aquatic organisms even at low concentrations. The aim of this study was to assess the effects of the illicit drug methamphetamine and the antidepressant sertraline on clonal marbled crayfish Procambarus virginalis. Crayfish exposed to the environmentally relevant concentrations of methamphetamine of ∼1 μg L-1 did not exhibit significant differences from unexposed controls in distance moved, velocity, and activity level with or without available shelter. Sertraline-exposed (∼1 μg L-1) crayfish were significantly more active, regardless of available shelter, and moved greater distances when shelter was available, compared to control crayfish. Crayfish exposed to methamphetamine and sertraline spent significantly more time outside the shelters compared to controls. Sertraline-exposed crayfish spawned more frequently and showed higher mortality than controls. The results suggest that the low environmental concentrations of the tested compounds could alter the behavior and life history traits of crayfish, resulting in higher reproductive effort and mortality.
- MeSH
- bezobratlí MeSH
- chemické látky znečišťující vodu toxicita MeSH
- chování zvířat účinky léků MeSH
- methamfetamin toxicita MeSH
- sertralin toxicita MeSH
- severní raci účinky léků růst a vývoj MeSH
- stadia vývoje účinky léků MeSH
- vodní organismy účinky léků růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Increasing production of energy crops in Europe, mainly maize and rapeseed, has altered patterns of pesticide use in recent decades. The long-term effects of S-metolachlor (S-M) and of its metabolite metolachlor OA (M-OA) at the environmentally relevant concentration of 4.2 μg L-1 and at 42 μg L-1 (ten-fold concentration) on marbled crayfish (Procambarus virginalis) were evaluated in a 28-day exposure and after a subsequent 28-day recovery period. Indicators assessed were behaviour; biochemical haemolymph profile; oxidative and antioxidant parameters of gill, hepatopancreas, and muscle; and histology of hepatopancreas and gill. Results showed biochemical haemolymph profile (lactate, alanine aminotransferase, aspartate aminotransferase, inorganic phosphate), lipid peroxidation in hepatopancreas, and antioxidant parameters (catalase, reduced glutathione, glutathione S-transferase) of hepatopancreas and gill of crayfish exposed to S-M and M-OA to significantly differ from controls (P < 0.01). Antioxidant biomarker levels remained different from controls after a 28-day recovery period. Differences in behaviour including speed of movement and velocity, and histopathological damage to gill and hepatopancreas were associated with S-M and M-OA exposure and persisted after 28 days in S-M- and M-OA-free water. Results suggest harmful effects of low concentrations of S-M and its metabolite M-OA on non-target organisms and provide information for assessing their effects at environmentally relevant concentrations.
- MeSH
- acetamidy chemie metabolismus farmakologie MeSH
- antioxidancia metabolismus MeSH
- chování zvířat účinky léků MeSH
- hemolymfa metabolismus MeSH
- hepatopankreas metabolismus MeSH
- peroxidace lipidů účinky léků MeSH
- severní raci účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH