In order to understand how olfactory stimuli are encoded and processed in the brain, it is important to build a computational model for olfactory receptor neurons (ORNs). Here, we present a simple and reliable mathematical model of a moth ORN generating spikes. The model incorporates a simplified description of the chemical kinetics leading to olfactory receptor activation and action potential generation. We show that an adaptive spike threshold regulated by prior spike history is an effective mechanism for reproducing the typical phasic-tonic time course of ORN responses. Our model reproduces the response dynamics of individual neurons to a fluctuating stimulus that approximates odorant fluctuations in nature. The parameters of the spike threshold are essential for reproducing the response heterogeneity in ORNs. The model provides a valuable tool for efficient simulations of olfactory circuits.
- MeSH
- akční potenciály fyziologie MeSH
- biologické modely MeSH
- čichové buňky účinky léků fyziologie MeSH
- elektrofyziologické jevy MeSH
- fyziologická adaptace * MeSH
- můry fyziologie MeSH
- sexuální lákadla farmakologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The efficient coding hypothesis predicts that sensory neurons adjust their coding resources to optimally represent the stimulus statistics of their environment. To test this prediction in the moth olfactory system, we have developed a stimulation protocol that mimics the natural temporal structure within a turbulent pheromone plume. We report that responses of antennal olfactory receptor neurons to pheromone encounters follow the temporal fluctuations in such a way that the most frequent stimulus timescales are encoded with maximum accuracy. We also observe that the average coding precision of the neurons adjusted to the stimulus-timescale statistics at a given distance from the pheromone source is higher than if the same encoding model is applied at a shorter, non-matching, distance. Finally, the coding accuracy profile and the stimulus-timescale distribution are related in the manner predicted by the information theory for the many-to-one convergence scenario of the moth peripheral sensory system.
- MeSH
- čichové buňky fyziologie MeSH
- čichové dráhy fyziologie MeSH
- elektrofyziologické jevy MeSH
- feromony fyziologie MeSH
- můry fyziologie MeSH
- neurony aferentní fyziologie MeSH
- pravděpodobnost MeSH
- reprodukovatelnost výsledků MeSH
- statistické modely MeSH
- tykadla členovců fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent studies on the theoretical performance of latency and rate code in single neurons have revealed that the ultimate accuracy is affected in a nontrivial way by aspects such as the level of spontaneous activity of presynaptic neurons, amount of neuronal noise or the duration of the time window used to determine the firing rate. This study explores how the optimal decoding performance and the corresponding conditions change when the energy expenditure of a neuron in order to spike and maintain the resting membrane potential is accounted for. It is shown that a nonzero amount of spontaneous activity remains essential for both the latency and the rate coding. Moreover, the optimal level of spontaneous activity does not change so much with respect to the intensity of the applied stimulus. Furthermore, the efficiency of the temporal and the rate code converge to an identical finite value if the neuronal activity is observed for an unlimited period of time.
- MeSH
- časové faktory MeSH
- energetický metabolismus * MeSH
- lidé MeSH
- membránové potenciály MeSH
- modely neurologické * MeSH
- nervová síť cytologie fyziologie MeSH
- neuronové sítě (počítačové) * MeSH
- neurony fyziologie MeSH
- počítačová simulace MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
It is studied what level of a continuous-valued signal is optimally estimable on the basis of first-spike latency neuronal data. When a spontaneous neuronal activity is present, the first spike after the stimulus onset may be caused either by the stimulus itself, or it may be a result of the prevailing spontaneous activity. Under certain regularity conditions, Fisher information is the inverse of the variance of the best estimator. It can be considered as a function of the signal intensity and then indicates accuracy of the estimation for each signal level. The Fisher information is normalized with respect to the time needed to obtain an observation. The accuracy of signal level estimation is investigated in basic discharge patterns modelled by a Poisson and a renewal process and the impact of the complex interaction between spontaneous activity and a delay of the response is shown.
Neuronal response latency is usually vaguely defined as the delay between the stimulus onset and the beginning of the response. It contains important information for the understanding of the temporal code. For this reason, the detection of the response latency has been extensively studied in the last twenty years, yielding different estimation methods. They can be divided into two classes, one of them including methods based on detecting an intensity change in the firing rate profile after the stimulus onset and the other containing methods based on detection of spikes evoked by the stimulation using interspike intervals and spike times. The aim of this paper is to present a review of the main techniques proposed in both classes, highlighting their advantages and shortcomings.
- MeSH
- akční potenciály fyziologie MeSH
- algoritmy * MeSH
- evokované potenciály fyziologie MeSH
- lidé MeSH
- modely neurologické * MeSH
- nervová síť fyziologie MeSH
- neurony fyziologie MeSH
- počítačová simulace MeSH
- reakční čas fyziologie MeSH
- statistické modely MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH
Stimulus response latency is the time period between the presentation of a stimulus and the occurrence of a change in the neural firing evoked by the stimulation. The response latency has been explored and estimation methods proposed mostly for excitatory stimuli, which means that the neuron reacts to the stimulus by an increase in the firing rate. We focus on the estimation of the response latency in the case of inhibitory stimuli. Models used in this paper represent two different descriptions of response latency. We consider either the latency to be constant across trials or to be a random variable. In the case of random latency, special attention is given to models with selective interaction. The aim is to propose methods for estimation of the latency or the parameters of its distribution. Parameters are estimated by four different methods: method of moments, maximum-likelihood method, a method comparing an empirical and a theoretical cumulative distribution function and a method based on the Laplace transform of a probability density function. All four methods are applied on simulated data and compared.
- MeSH
- aferentní nervové dráhy fyziologie MeSH
- akční potenciály fyziologie MeSH
- časové faktory MeSH
- fyzikální stimulace MeSH
- lidé MeSH
- modely neurologické * MeSH
- nervový útlum fyziologie MeSH
- neurony fyziologie MeSH
- počítačová simulace MeSH
- reakční čas fyziologie MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH