Since the outbreak of the COVID-19 pandemic, the use of hand sanitisers has become an inseparable part of our personal hygiene. However, the short-term effect and the need for frequent application are shortcomings that impair the overall protection. Another aspect is that repeated use of some products (typically alcohol-based) may cause skin irritation or eventually more severe health problems. This work proposes spray-drying as a suitable method for the preparation of swellable chitosan carriers, allowing for encapsulation and sustained release of antibacterial chlorhexidine digluconate as a model active substance. After application to hands, micron-sized particles preferentially accommodate space between epidermal ridges, protected against attrition. Thanks to their small size (d < 10 μm), particles are comfortable to carry since they are not recognisable by somatosensory receptors. The performance of formulations with various amounts of chlorhexidine and cross-linker was tested and compared with selected commercial disinfectants available on the Czech market (ethanol gel and alcoholic solution with chlorhexidine) against E. coli and S. epidermidis. The real-life performance was investigated with twelve volunteers performing various activities for up to 2 h. Finally, a replica of the human index finger with accurately captured micro-topology was proposed and compared with volunteers' fingers concerning the total amount of adhered and detached particles.
- MeSH
- chlorhexidin MeSH
- dezinfekční prostředky na mytí rukou * MeSH
- Escherichia coli MeSH
- ethanol MeSH
- lidé MeSH
- pandemie MeSH
- prášky, zásypy, pudry MeSH
- ruka mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Spray drying is commonly used for producing amorphous solid dispersions to improve drug solubility. The development of such formulations typically relies on comprehensive excipient and composition screening, which requires the preparation of many spray-dried powder samples. This is both labour-intensive and time-consuming when carried out manually. In the present work, the formulation screening task was automated by coupling a laboratory spray dryer operated in a semi-continuous mode with custom-made add-ons, allowing for rapid, computer-controlled production of formulation samples with systematically varying composition. The practical use of the spray drying robot in formulation development was demonstrated on a case study of poorly water-soluble model drugs simvastatin and ezetimibe. Six different polymers and several drug:polymer ratios were screened for the enhancement of dissolution properties. From a pool of 28 spray-dried samples, ternary compositions containing Eudragit L100-55 were identified as the most suitable ones for further processing and characterisation. The ability to populate the formulation design space rapidly and automatically made it possible to construct maps of physico-chemical properties such as glass transition temperature or dissolution rate. The spray drying robot thus enables the acceleration of early formulation development and a deeper understanding of composition-property relationships for multi-component spray dried powders.
- MeSH
- polymery chemie MeSH
- příprava léků MeSH
- robotika * MeSH
- rozpustnost MeSH
- sprejové sušení * MeSH
- Publikační typ
- časopisecké články MeSH
Drug depot systems have traditionally relied on the spontaneous dissolution and diffusion of drugs or prodrugs from a reservoir with constant exposure to the surrounding physiological fluids. While this is appropriate for clinical scenarios that require constant plasma concentration of the drug over time, there are also situations where multiple bursts of the drug at well-defined time intervals are preferred. This work presents a drug depot system that enables repeated on-demand release of antibiotics in precise doses, controlled by an external radiofrequency magnetic field. The remotely controlled depot system consists of composite microcapsules with a core-shell structure. The core contains micronized drug particles embedded in a low-melting hydrophobic matrix. The shell is formed by a hydrogel with immobilised magnetic nanoparticles that facilitate local heat dissipation after exposure to a radiofrequency magnetic field. When the melting point of the core material is locally exceeded, the embedded drug particles are mobilised and their surface is exposed to the external aqueous phase. It is shown that drug release can be controlled in an on/off manner by a chosen sequence and duration of radiofrequency pulses. The capacity of the depot system is shown to be significantly higher than that of purely diffusion-controlled systems containing a pre-dissolved drug. The functionality of the depot system is demonstrated in vitro for the specific case of norfloxacin acting on E. coli.
- MeSH
- antibakteriální látky * MeSH
- Escherichia coli MeSH
- hydrogely chemie MeSH
- nanočástice * chemie MeSH
- uvolňování léčiv MeSH
- Publikační typ
- časopisecké články MeSH
Crops, such as white cabbage (Brassica oleracea L. var. capitata (L.) f. alba), are often infested by herbivorous insects that consume the leaves directly or lay eggs with subsequent injury by caterpillars. The plants can produce various defensive metabolites or free radicals that repel the insects to avert further damage. To study the production and effects of these compounds, large white cabbage butterflies, Pieris brassicae and flea beetles, Phyllotreta nemorum, were captured in a cabbage field and applied to plants cultivated in the lab. After insect infestation, leaves were collected and UV/Vis spectrophotometry and HPLC used to determine the content of stress molecules (superoxide), primary metabolites (amino acids), and secondary metabolites (phenolic acids and flavonoids). The highest level of superoxide was measured in plants exposed to fifty flea beetles. These plants also manifested a higher content of phenylalanine, a substrate for the synthesis of phenolic compounds, and in activation of total phenolics and flavonoid production. The levels of specific phenolic acids and flavonoids had higher variability when the dominant increase was in the flavonoid, quercetin. The leaves after flea beetle attack also showed an increase in ascorbic acid which is an important nutrient of cabbage.