Many models of mutualism have been proposed and studied individually. In this paper, we develop a general class of models of facultative mutualism that covers many of such published models. Using mild assumptions on the growth and self-limiting functions, we establish necessary and sufficient conditions on the boundedness of model solutions and prove the global stability of a unique coexistence equilibrium whenever it exists. These results allow for a greater flexibility in the way each mutualist species can be modelled and avoid the need to analyse any single model of mutualism in isolation. Our generalization also allows each of the mutualists to be subject to a weak Allee effect. Moreover, we find that if one of the interacting species is subject to a strong Allee effect, then the mutualism can overcome it and cause a unique coexistence equilibrium to be globally stable.
- MeSH
- Models, Biological * MeSH
- Population Dynamics MeSH
- Symbiosis * MeSH
- Publication type
- Journal Article MeSH
Host manipulation by sexually transmitted parasites which increases host mating rate and thus parasite transmission rate has long been viewed as a plausible parasite adaptation. However, empirical evidence for it is rare. Here, using an adaptive dynamics approach to evolution, we explore conditions under which such disease-induced mating enhancement is (or is not) likely to occur. We find that increased mating success is less likely to evolve if the host reproduction rate, or the baseline disease transmission rate, is reduced, and the parasite affects just one sex, compared to when it affects both. We also find that it is less likely to evolve if the virulence-transmission trade-off curve is stronger, since we assume that enhanced disease transmission can only be achieved at the cost of increased virulence and as this trade-off is concave. In addition, we demonstrate that if disease-induced mating enhancement is equally acting in both sexes the mating system has no effect on evolutionary outcomes. On the contrary, if disease-induced mating enhancement is acting in just one sex, the potential for its evolution increases with the degree of polygyny in the host population. To study the examined phenomenon in greater detail we encourage further empirical research on this apparently less explored impact of sexually transmitted parasites on host fitness.
- MeSH
- Biological Evolution MeSH
- Models, Biological MeSH
- Communicable Diseases parasitology MeSH
- Humans MeSH
- Parasites physiology MeSH
- Population Dynamics MeSH
- Sexual Behavior, Animal physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH