IMPORTANCE: Lip, oral, and pharyngeal cancers are important contributors to cancer burden worldwide, and a comprehensive evaluation of their burden globally, regionally, and nationally is crucial for effective policy planning. OBJECTIVE: To analyze the total and risk-attributable burden of lip and oral cavity cancer (LOC) and other pharyngeal cancer (OPC) for 204 countries and territories and by Socio-demographic Index (SDI) using 2019 Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates. EVIDENCE REVIEW: The incidence, mortality, and disability-adjusted life years (DALYs) due to LOC and OPC from 1990 to 2019 were estimated using GBD 2019 methods. The GBD 2019 comparative risk assessment framework was used to estimate the proportion of deaths and DALYs for LOC and OPC attributable to smoking, tobacco, and alcohol consumption in 2019. FINDINGS: In 2019, 370 000 (95% uncertainty interval [UI], 338 000-401 000) cases and 199 000 (95% UI, 181 000-217 000) deaths for LOC and 167 000 (95% UI, 153 000-180 000) cases and 114 000 (95% UI, 103 000-126 000) deaths for OPC were estimated to occur globally, contributing 5.5 million (95% UI, 5.0-6.0 million) and 3.2 million (95% UI, 2.9-3.6 million) DALYs, respectively. From 1990 to 2019, low-middle and low SDI regions consistently showed the highest age-standardized mortality rates due to LOC and OPC, while the high SDI strata exhibited age-standardized incidence rates decreasing for LOC and increasing for OPC. Globally in 2019, smoking had the greatest contribution to risk-attributable OPC deaths for both sexes (55.8% [95% UI, 49.2%-62.0%] of all OPC deaths in male individuals and 17.4% [95% UI, 13.8%-21.2%] of all OPC deaths in female individuals). Smoking and alcohol both contributed to substantial LOC deaths globally among male individuals (42.3% [95% UI, 35.2%-48.6%] and 40.2% [95% UI, 33.3%-46.8%] of all risk-attributable cancer deaths, respectively), while chewing tobacco contributed to the greatest attributable LOC deaths among female individuals (27.6% [95% UI, 21.5%-33.8%]), driven by high risk-attributable burden in South and Southeast Asia. CONCLUSIONS AND RELEVANCE: In this systematic analysis, disparities in LOC and OPC burden existed across the SDI spectrum, and a considerable percentage of burden was attributable to tobacco and alcohol use. These estimates can contribute to an understanding of the distribution and disparities in LOC and OPC burden globally and support cancer control planning efforts.
- MeSH
- celosvětové zdraví MeSH
- dospělí MeSH
- globální zátěž nemocemi * MeSH
- incidence MeSH
- kvalitativně upravené roky života MeSH
- lidé MeSH
- nádory hltanu * epidemiologie MeSH
- ret MeSH
- rizikové faktory MeSH
- užívání tabáku epidemiologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
Glioma is the most pernicious cancer of the nervous system, with histological grade influencing the survival of patients. Despite many studies on the multimodal treatment approach, survival time remains brief. In this study, a novel two-stage ensemble of an ensemble-type machine learning-based predictive framework for glioma detection and its histograde classification is proposed. In the proposed framework, five characteristics belonging to 135 subjects were considered: human telomerase reverse transcriptase (hTERT), chitinase-like protein (YKL-40), interleukin 6 (IL-6), tissue inhibitor of metalloproteinase-1 (TIMP-1) and neutrophil/lymphocyte ratio (NLR). These characteristics were examined using distinctive ensemble-based machine learning classifiers and combination strategies to develop a computer-aided diagnostic system for the non-invasive prediction of glioma cases and their grade. In the first stage, the analysis was conducted to classify glioma cases and control subjects. Machine learning approaches were applied in the second stage to classify the recognised glioma cases into three grades, from grade II, which has a good prognosis, to grade IV, which is also known as glioblastoma. All experiments were evaluated with a five-fold cross-validation method, and the classification results were analysed using different statistical parameters. The proposed approach obtained a high value of accuracy and other statistical parameters compared with other state-of-the-art machine learning classifiers. Therefore, the proposed framework can be utilised for designing other intervention strategies for the prediction of glioma cases and their grades.
- MeSH
- gliom * diagnóza MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- nádory mozku * diagnóza MeSH
- strojové učení * MeSH
- stupeň nádoru MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH