In search of new cytotoxic derivatives based on the lupane scaffold, methyl betulonate and methyl 20,29-dihydrobetulonate were conjugated with Reformatsky reagents to provide homolupanes extended at the C3-carbon atom. Further transformations of the functional groups afforded a series of derivatives with 2-hydroxyethyl and allyl alcohol moieties. Their varying antiproliferative activity in vitro was then investigated in four cancer cell lines and in normal human BJ fibroblasts. In cervical carcinoma HeLa cells, derivatives 5, 6 and 17 were the most promising with lower micromolar IC50s and no toxicity to fibroblasts, thus showing a high therapeutic index. In addition, induction of apoptosis was found in HeLa cells after 24 h treatment with compounds 5, 6, 13 and 29. This newly synthesized series is more interesting than the published lupane and homolupane triterpenes and saponins, due to their nontoxicity towards healthy human cells and stronger cytotoxicity to various cancer cell lines. This approach increases their potential as anticancer agents.
- MeSH
- Antineoplastic Agents * pharmacology MeSH
- HeLa Cells MeSH
- Betulinic Acid MeSH
- Drug Screening Assays, Antitumor MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Triterpenes * pharmacology MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Triterpene bidesmosides are considered as highly cytotoxic saponins, usually less toxic against normal cells than monodesmosides, and less haemolytic. Biological activity of the betulin-type bidesmosides, rarely found in Nature, and seldom prepared due to serious synthetic problems, is poorly recognized. We report herein a protocol for the preparation of disubstituted lupane saponins (betulin bidesmosides) by treatment of their benzoates with potassium carbonate in dichloromethane / methanol solution. Cytotoxicity of all compounds was tested in vitro for a series of cancer cell lines, as well as normal human skin BJ fibroblasts. Presence of l-rhamnose moiety is crucial for cytotoxicity of betulin bidesmosides. On the other hand, l-arabinose fragment connected to lupane C-3 carbon atom significantly decreases activity. Presented results clearly show that betulin bidesmosides have significant clinical potential as anticancer agents.
- MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Cell Line MeSH
- HeLa Cells MeSH
- Humans MeSH
- MCF-7 Cells MeSH
- Neoplasms drug therapy MeSH
- Rhamnose analogs & derivatives chemical synthesis pharmacology MeSH
- Triterpenes chemical synthesis chemistry pharmacology MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
A practical synthesis of 28a-homo-28a-selenolupane triterpenes and the corresponding selenosaponins containing d-mannose, l-arabinose, l-rhamnose, and d-idose moieties is described. Selenium containing triterpenes were obtained from the readily available 3-O-allyl-homobetulin mesylate by nucleophilic substitution with the selenocyanate ion which upon reduction of the -SeCN group afforded the free selenol. Glycosylation using classical Schmidt donors gave 1,2-trans selenosaponins as the main product as well as minute amounts of 1,2-cis isomers. This is one of the very few examples of the synthesis of selenoglycosides by direct glycosylation of free selenols. The studied selenol showed high resistance to air oxidation resulting in good stability during the synthesis of selenolupane derivatives. Cytotoxic activities of new homoselenolupane derivatives were also evaluated in vitro and revealed that some triterpenes exhibited an interesting profile against human cancer cell lines.
- MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Saponins chemical synthesis chemistry pharmacology MeSH
- Selenium chemistry MeSH
- Chemistry Techniques, Synthetic MeSH
- Triterpenes chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
A series of lupane-type saponins bearing OSW-1 disaccharide unit as well as its regio- and stereoisomers were prepared and used for the structure-activity relationships (SAR) study. Unexpected preference for 1→4-linked regioisomers and an unusual inversion of the conformation of the sugar rings were noted. Cytotoxic activity of new lupane compounds was evaluated in vitro and revealed that some saponins exhibited an interesting bioactivity profile against human cancer cell lines. Influence of the protecting groups on the cytotoxicity was investigated. These results open the way to the synthesis of various lupane-type triterpene and saponin derivatives as potential anticancer compounds.
- MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Arabinose chemistry MeSH
- Disaccharides chemical synthesis chemistry pharmacology MeSH
- Glycosylation MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Saponins chemistry MeSH
- Stereoisomerism MeSH
- Chemistry Techniques, Synthetic MeSH
- Triterpenes chemistry MeSH
- Hydrogen Bonding MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Publication type
- Meeting Abstract MeSH