During pregnancy, women undergo several metabolic changes to guarantee an adequate supply of glucose to the foetus. These metabolic modifications develop what is known as physiological insulin resistance. When this process is altered, however, gestational diabetes mellitus (GDM) occurs. GDM is a multifactorial disease, and genetic and environmental factors play a crucial role in its aetiopathogenesis. GDM has been linked to both macroscopic and molecular alterations in placental tissues that affect placental physiology. This review summarizes the role of the placenta in the development of GDM from a molecular perspective, including hormonal and pro-inflammatory changes. Inflammation and hormonal imbalance, the characteristics dominating the GDM microenvironment, are responsible for placental changes in size and vascularity, leading to dysregulation in maternal and foetal circulations and to complications in the newborn. In conclusion, since the hormonal mechanisms operating in GDM have not been fully elucidated, more research should be done to improve the quality of life of patients with GDM and their future children.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cardiovascular disease (CVD) is a global public health issue due to its high morbidity, mortality, and economic impact. The implementation of innovative therapeutic alternatives for CVD is urgently required. Specialized proresolving lipid mediators (SPMs) are bioactive compounds derived from ω-3 and ω-6 fatty acids, integrated into four families: Lipoxins, Resolvins, Protectins, and Maresins. SPMs have generated interest in recent years due to their ability to promote the resolution of inflammation associated with the pathogeneses of numerous illnesses, particularly CVD. Several preclinical studies in animal models have evidenced their ability to decrease the progression of atherosclerosis, intimal hyperplasia, and reperfusion injury via diverse mechanisms. Large-scale clinical trials are required to determine the effects of SPMs in humans. This review integrates the currently available knowledge of the therapeutic impact of SPMs in CVD from preclinical and clinical studies, along with the implicated molecular pathways. In vitro results have been promising, and as such, SPMs could soon represent a new therapeutic alternative for CVD.
- MeSH
- ateroskleróza * metabolismus MeSH
- kardiovaskulární nemoci * farmakoterapie MeSH
- kyseliny dokosahexaenové metabolismus farmakologie terapeutické užití MeSH
- kyseliny mastné omega-3 * metabolismus farmakologie terapeutické užití MeSH
- lidé MeSH
- mediátory zánětu metabolismus MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators, members of the Hippo signaling pathway, which play a critical role in cell growth regulation, embryonic development, regeneration, proliferation, and cancer origin and progression. The mechanism involves the nuclear binding of the un-phosphorylated YAP/TAZ complex to release the transcriptional enhanced associate domain (TEAD) from its repressors. The active ternary complex is responsible for the aforementioned biological effects. Overexpression of YAP/TAZ has been reported in cancer stem cells and tumor resistance. The resistance involves chemotherapy, targeted therapy, and immunotherapy. This review provides an overview of YAP/TAZ pathways' role in carcinogenesis and tumor microenvironment. Potential therapeutic alternatives are also discussed.
- MeSH
- buněčný převod mechanických signálů MeSH
- chemorezistence MeSH
- karcinogeneze metabolismus patologie MeSH
- lidé MeSH
- nádorové mikroprostředí * MeSH
- signální proteiny YAP * MeSH
- transkripční koaktivátor s motivem vázajícím se na PDZ metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH