Mycobacterium leprae is the causative agent responsible for the chronic disease known as leprosy. This condition is characterized by dermal involvement, often leading to peripheral nerve damage, sensory-motor loss, and related abnormalities. Both innate and acquired immunological responses play a role in the disease, and even in individuals with lepromatous leprosy, there can be a transient increase in T cell immunity during lepromatous reactions. Diagnosing of early-stage leprosy poses significant challenges. In this context, nanoparticles have emerged as a promising avenue for addressing various crucial issues related to leprosy. These include combatting drug resistance, mitigating adverse effects of conventional medications, and enhancing targeted drug delivery. This review serves as a comprehensive compilation, encompassing aspects of pathology, immunology, and adverse effects of multidrug delivery systems in the context of leprosy treatment. Furthermore, the review underscores the significance of ethnomedicinal plants, bioactive secondary metabolites, and nanotherapeutics in the management of leprosy. It emphasizes the potential to bridge the gap between existing literature and ongoing research efforts, with a profound scope for validating traditional claims, developing herbal medicines, and formulating nanoscale drug delivery systems that are safe, effective, and widely accepted.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants are considered as a healthcare resource and widely used by rural people in their traditional medicine system for curing neurodegenerative diseases. Neurodegenerative diseases refer to incurable and debilitating conditions that result in progressive degeneration/death of nerve cells or neurons in the human brain. This review is mainly focused on the usage of different ethnomedicinal plants in the treatment of different neurodegenerative diseases in Himachal Pradesh. Study reveals total of 73 ethnomedicinal plants, which are used for treating different neurological disorders in different areas of Himachal Pradesh. The data is compiled from the different sources that described the detailed information of plants in tabular form and highlights the significance of different phytochemicals on neuroprotective function. The present study also provides the scientific data and clinical (in-vivo and in-vitro) studies in support of ethnomedicinal use. AIM OF THE STUDY: This review aims to provide information of ethnomedicinal plants which are used for the treatment of neurodegenerative diseases in Himachal Pradesh. MATERIALS AND METHODS: Information on the use of ethnomedicinal plants to treat various neurological disorders has been gathered from a variety of sources, including various types of literature, books, and relevant publications in Google Scholar, Research Gate, Science Direct, Scopus, and Pub Med, among others. The collected data is tabulated, including the botanical names of plants, mode of use and the disease for which it is used for curing, etc. RESULTS: There are 73 ethnomedicinal plants that are used to cure various neurological disorders, with the most plants being used to treat epilepsy problem in Himachal Pradesh. CONCLUSION: Numerous phytochemicals and extracts from diverse plants were found to have a protective effect against neurodegenerative diseases. Antioxidant activity is known to exist in a variety of herbal plants. The most common bioactive antioxidant chemicals having their significant impacts include flavonoids, flavones, coumarins, lignans, isoflavones, catechins, anthocyanins, and isocatechins.
- MeSH
- anthokyaniny MeSH
- antioxidancia MeSH
- etnofarmakologie MeSH
- fytonutrienty farmakologie MeSH
- fytoterapie MeSH
- lidé MeSH
- neurodegenerativní nemoci * farmakoterapie MeSH
- tradiční lékařství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Indie MeSH
ETHNOPHARMACOLOGICAL RELEVANCE: Different plants are used for the treatment of various ailments and Acorus calamus L. is one such plant found in Western Himalaya. Rhizome of this plants has ethnomedicinal significance, as its rhizome is used for curing fever, pain and inflammation. An attempt has been made to alter the phytochemicals and increase its antioxidant property in a sustainable way with the help of mycorrhizal inoculation. AIM OF THE STUDY: Study of mycorrhizal (Funneliformis mosseae) impact on the biological activities and phytochemical profile of A. calamus L. rhizome and in silico studies of phytochemicals for their anti-inflammatory property. MATERIALS AND METHODS: F. mosseae was mass multiplied by single spore culture and then A. calamus rhizomes were inoculated with it. Antioxidant potential of rhizome extract was observed by DPPH and FRAP assays and the phytochemical profiling was done with GC-MS analysis. For observing antimicrobial activity disc diffusion method was employed. Dominant phytochemicals α-asarone and monolinolein TMS were chosen for molecular docking studies against four receptors (4COX, 2AZ5, 5I1B, 1ALU). RESULTS: There was increase in antioxidant activity of rhizome extract after mycorrhizal inoculation. However, no change in antimicrobial activity was observed in the plant after mycorrhizal inoculation. The comparison in phytochemicals was observed by GC-MS analysis which showed qualitative and quantitative variation in biochemical content in plants. The phytochemical, α-asarone and monolinolein TMS showed highest docking score and least binding energy against 1ALU and 4COX respectively for anti-inflammatory activity. CONCLUSION: Medicinal plants are potential source of antioxidants which can be increased by mycorrhizal inoculation without addition of chemical fertilizers and also results in altering the phytochemical composition.
- MeSH
- antiflogistika izolace a purifikace farmakologie MeSH
- antiinfekční látky izolace a purifikace farmakologie MeSH
- antioxidancia izolace a purifikace farmakologie MeSH
- diskové difúzní antimikrobiální testy MeSH
- fytonutrienty izolace a purifikace farmakologie MeSH
- houby fyziologie MeSH
- mykorhiza fyziologie MeSH
- oddenek MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- počítačová simulace MeSH
- puškvorec chemie mikrobiologie MeSH
- rostlinné extrakty farmakologie MeSH
- simulace molekulového dockingu MeSH
- tradiční lékařství MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Indie MeSH
Aging is a complicated biological process in which functional and structural alterations in a living organism take place over time. Reactive oxygen species is one of the main factors responsible for aging and is associated with several chronic pathologies. The relationship between aging and diet is quite interesting and has attained worldwide attention. Healthy food, in addition to dietary antioxidants, are required to delay the process of aging and improve the quality of life. Many healthy foods such as fruits are a good source of dietary nutrients and natural bioactive compounds which have antioxidant properties and are involved in preventing aging and other age-related disorders. Health benefits linked with healthy consumption of fruit have drawn increased interest. A significant number of studies have documented the advantages of fruit intake, as it suppresses free-radical development that further reduces the oxidative stress created in the body and protects against several types of diseases such as cancer, type 2 diabetes, inflammatory disorders, and other cardiovascular diseases that ultimately prevent aging. In addition, fruits have numerous other properties like anti-inflammatory, anti-cancerous, anti-diabetic, neuroprotective, and have health-promoting effects. Mechanisms of various bioactive compounds that aids in preventing various diseases and increases longevity are also described. This manuscript provides a summary of various bioactive components present in fruits along with their health-promoting and antiaging properties.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH