In order to improve soybean's resistance to lodging, silicon (Si) solutions at concentrations of 0,100, 200,300 mg kg-1 were applied during the seedling stage. The Si accumulation in different parts of the plants, the photosynthetic parameters of leaves and chlorophyll content, the stem bending resistance, the expression of genes of lignin biosynthesis and associated enzyme activity and sap flow rates were measured at early and late growth stages. The potential mechanisms for how Si improve growth and shade tolerance, enhances lodging resistance and improves photosynthesis were analyzed to provide a theoretical basis for the use of Si amendments in agriculture. After application of Si at 200 mg kg-1, the net photosynthetic rate of soybeans increased by 46.4 % in the light and 33.3 % under shade. The application of Si increased chlorophyll content, and fresh weight of leaves, reduced leaf area and enhanced photosynthesis by increasing stomatal conductance. The activity of peroxidase (POD), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and phenylalanine ammonia-lyase (PAL) increased during pre-and post-growth periods, whereas Si also increased lignin accumulation and inhibited lodging. We concluded that Si affects the composition of plant cell walls components, mostly by altering linkages of non-cellulosic polymers and lignin. The modifications of the cell wall network through Si application could be a useful strategy to reduce shading stress in intercropping.
Peatlands are one of the most important ecosystems due to their biodiversity and abundant organic compounds; therefore, it is important to observe how different plant species in peatlands react to changing environmental conditions. Sphagnum spp. are the main component of peatlands and are considered as the creator of conditions favorable for carbon storage in the form of peat. Sphagnum angustifolium and Sphagnum fallax are taxonomically very close species. To examine their adaptability to climate change, we studied the morphology and pigment content of these two species from environmental manipulation sites in Poland, where the environment was continuously manipulated for temperature and precipitation. The warming of peat was induced by using infrared heaters, whereas total precipitation was reduced by a curtain that cuts the nighttime precipitation. Morphology of S. angustifolium stayed under climate manipulation relatively stable. However, the main morphological parameters of S. fallax were significantly affected by precipitation reduction. Thus, this study indicates S. angustifolium is better adapted in comparison to S. fallax for drier and warmer conditions.
In the present study, singlet oxygen (¹O₂) scavenging activity of tocopherol and plastochromanol was examined in tocopherol cyclase-deficient mutant (vte1) of Arabidopsis thaliana lacking both tocopherol and plastochromanol. It is demonstrated here that suppression of tocopherol and plastochromanol synthesis in chloroplasts isolated from vte1 Arabidopsis plants enhanced ¹O₂ formation under high light illumination as monitored by electron paramagnetic resonance spin-trapping spectroscopy. The exposure of vte1 Arabidopsis plants to high light resulted in the formation of secondary lipid peroxidation product malondialdehyde as determined by high-pressure liquid chromatography. Furthermore, it is shown here that the imaging of ultra-weak photon emission known to reflect oxidation of lipids was unambiguously higher in vte1 Arabidopsis plants. Our results indicate that tocopherol and plastochromanol act as efficient ¹O₂ scavengers and protect effectively lipids against photooxidative damage in Arabidopsis plants.
- MeSH
- Arabidopsis genetika metabolismus účinky záření MeSH
- chloroplasty metabolismus MeSH
- intramolekulární transferasy genetika MeSH
- listy rostlin genetika metabolismus účinky záření MeSH
- oxidační stres * MeSH
- scavengery volných radikálů metabolismus MeSH
- singletový kyslík metabolismus MeSH
- spin trapping MeSH
- tokoferoly metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
All living organisms emit ultra-weak photon emission as a result of oxidative processes caused by the physical or chemical stress factors. In the present study, the effect of oxidative stress induced by the exposure of the plant model Arabidopsis thaliana to ultraviolet A (UVA) radiation was studied using ultra-weak photon emission. When Arabidopsis plants and leaves were exposed to UVA radiation, two kinetically distinguished phases in the ultra-weak photon emission decay were observed: the fast decay phase (τ1=0.805±0.024 min) and slow decay phase (τ2=4.321±0.166 min). The spectral analysis of the UVA radiation-induced ultra-weak photon emission showed that the photon emission during the fast decay phase is from both blue-green and red regions of the spectrum, whereas the photon emission during the slow decay phase is solely from the blue-green region of the spectrum. These observations reveal that triplet excited carbonyls contribute to ultra-weak photon emission during both fast and slow decay phases, whereas chlorophylls participate in the ultra-weak photon emission solely during the fast decay phase. It is illustrated here that the ultra-weak photon emission serves as a non-invasive method for the monitoring of oxidative stress in plants caused by UVA radiation.
In this study, evidence is provided on the formation of hydrogen peroxide (H(2)O(2)) and hydroxyl radical (HO) in the potato tuber during the necrotrophic phase of the hemibiotrophic pathogen Phytophthora infestans infection. Using 3,3-diaminobenzidine tetrahydrochloride (DAB) imaging technique, the formation of H(2)O(2) was demonstrated in P. infestans-infected potato tuber. For the first time, HO formation was demonstrated in P. infestans-infected potato tuber using electron paramagnetic resonance (EPR) spectroscopy. An enhancement in spontaneous ultra-weak photon emission indicated the extent of lipid peroxidation in the P. infestans-infected potato tuber. The data presented in this study reveal that the formation of H(2)O(2) and HO in the P. infestans-infected potato tuber is associated with lipid peroxidation. It is proposed here that the ultra-weak photon emission can be used as a non-invasive indicator of the oxidative processes in the quality control at food industry.
- MeSH
- hydroxylový radikál metabolismus MeSH
- kvalita jídla MeSH
- molekulární zobrazování MeSH
- nemoci rostlin parazitologie MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů MeSH
- Phytophthora infestans růst a vývoj fyziologie MeSH
- Solanum tuberosum metabolismus parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
All living organisms emit spontaneous ultraweak photon emission as a result of cellular metabolic processes. In this study, the involvement of reactive oxygen species (ROS) formed as the byproduct of oxidative metabolic processes in spontaneous ultraweak photon emission was studied in human hand skin. The effect of molecular oxygen and ROS scavengers on spontaneous ultraweak photon emission from human skin was monitored using a highly sensitive photomultiplier tube and charged coupled device camera. When spontaneous ultraweak photon emission was measured under anaerobic conditions, the photon emission was decreased, whereas under hyperaerobic condition the enhancement in photon emission was observed. Spontaneous ultraweak photon emission measured after topical application of glutathione, α-tocopherol, ascorbate, and coenzyme Q10 was observed to be decreased. These results reveal that ROS formed during the cellular metabolic processes in the epidermal cells play a significant role in the spontaneous ultraweak photon emission. It is proposed that spontaneous ultraweak photon emission can be used as a noninvasive tool for the temporal and spatial monitoring of the oxidative metabolic processes and intrinsic antioxidant system in human skin.
- MeSH
- alfa-tokoferol metabolismus MeSH
- dospělí MeSH
- fotografování MeSH
- fotony MeSH
- fyziologie kůže účinky léků MeSH
- glutathion metabolismus MeSH
- kůže chemie účinky léků metabolismus MeSH
- kyselina askorbová metabolismus MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- ruka MeSH
- scavengery volných radikálů farmakologie MeSH
- spektrofotometrie přístrojové vybavení metody MeSH
- ubichinon analogy a deriváty metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND/PURPOSE: All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. METHODS: A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. RESULTS: Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. CONCLUSION: The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.
- MeSH
- epidermis účinky léků metabolismus MeSH
- fotony MeSH
- fyziologie kůže účinky léků MeSH
- lidé MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků fyziologie MeSH
- oxidancia aplikace a dávkování diagnostické užití MeSH
- peroxid vodíku aplikace a dávkování diagnostické užití MeSH
- radiometrie MeSH
- ruka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH