In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- MeSH
- autofagie * fyziologie MeSH
- autofagozomy MeSH
- biologické markery MeSH
- biotest normy MeSH
- lidé MeSH
- lyzozomy MeSH
- proteiny spojené s autofagií metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- směrnice MeSH
- MeSH
- autofagie * fyziologie MeSH
- biotest metody normy MeSH
- lidé MeSH
- počítačová simulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- směrnice MeSH
Tooth morphogenesis is accompanied by apoptotic events which show restricted temporospatial patterns suggesting multiple roles in odontogenesis. Dental apoptosis seems to be caspase dependent and caspase-3 has been shown to be activated during dental apoptosis.Caspase-3 mutant mice on different genetic backgrounds were used to investigate alterations in dental apoptosis and molar tooth morphogenesis. Mouse embryos at E15.5 were analyzed to reveal any changes in enamel knots, which are transient structures eliminated by apoptosis. In caspase-3(-/-) mice on the B57BL/6 background, disorganization of the epithelium was found in the original primary enamel knot area and confirmed by altered expression of Shh. Despite this early defect in molar tooth development, these mutants showed correct formation of secondary enamel knots as indicated by Fgf-4 expression. Analyses of adult molar teeth did not reveal any major alterations in tooth shape, enamel structure or pattern when compared to heterozygote littermates. In caspase-3(-/-) mice on the 129X1/SvJ background, no defects in tooth development were found except the position of the upper molars which developed more posteriorly in the oral cavity. This is likely, however, to be a secondary defect caused by a physical squashing of the face by the malformed brain. The results suggest that although caspase-3 becomes activated and may be essential for dental apoptosis, it does not seem fundamental for formation of normal mineralised molar teeth.
- MeSH
- apoptóza MeSH
- fibroblastový růstový faktor 4 genetika MeSH
- financování organizované MeSH
- hybridizace in situ MeSH
- kaspasa 3 MeSH
- kaspasy genetika nedostatek MeSH
- messenger RNA metabolismus MeSH
- moláry cytologie embryologie enzymologie MeSH
- myši knockoutované MeSH
- myši MeSH
- odontogeneze fyziologie genetika MeSH
- proliferace buněk MeSH
- proteiny hedgehog MeSH
- trans-aktivátory genetika MeSH
- vývojová regulace genové exprese MeSH
- zubní sklovina cytologie embryologie enzymologie MeSH
- zubní zárodek cytologie embryologie enzymologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH