Drug depot systems have traditionally relied on the spontaneous dissolution and diffusion of drugs or prodrugs from a reservoir with constant exposure to the surrounding physiological fluids. While this is appropriate for clinical scenarios that require constant plasma concentration of the drug over time, there are also situations where multiple bursts of the drug at well-defined time intervals are preferred. This work presents a drug depot system that enables repeated on-demand release of antibiotics in precise doses, controlled by an external radiofrequency magnetic field. The remotely controlled depot system consists of composite microcapsules with a core-shell structure. The core contains micronized drug particles embedded in a low-melting hydrophobic matrix. The shell is formed by a hydrogel with immobilised magnetic nanoparticles that facilitate local heat dissipation after exposure to a radiofrequency magnetic field. When the melting point of the core material is locally exceeded, the embedded drug particles are mobilised and their surface is exposed to the external aqueous phase. It is shown that drug release can be controlled in an on/off manner by a chosen sequence and duration of radiofrequency pulses. The capacity of the depot system is shown to be significantly higher than that of purely diffusion-controlled systems containing a pre-dissolved drug. The functionality of the depot system is demonstrated in vitro for the specific case of norfloxacin acting on E. coli.
- MeSH
- antibakteriální látky * MeSH
- Escherichia coli MeSH
- hydrogely chemie MeSH
- nanočástice * chemie MeSH
- uvolňování léčiv MeSH
- Publikační typ
- časopisecké články MeSH
Wood chips ash coming from biomass heating plant is studied as an eco-friendly mineral admixture in mortar mix design. The raw material was mechanically activated by milling in a vibratory disc mill to a degree of fineness comparable to cement. For the mortars with ash dosage, basic physical, mechanical, hygric, and thermal properties is accessed. The mortars with partial Portland cement replacement with wood chips ash exhibited good functional properties for all studied ash dosages. With increasing amount of the ash used, the average pore diameter decreased due to the partial filler effect of WCHA in mortar mix. The strength activity index was very high for all studied mortars and gave evidence of the wood chips ash pozzolanity. The pozzolan effectiveness coefficient varied from 1.52 to 0.59, which proved the pozzolanity of the studied ash and synergic effects in the Portland cement-ash-water system. The results of leaching tests showed, the chlorides contained in ash were safely immobilized in the silicate matrix. The environmental evaluation revealed decrease in both carbon dioxide production and energy consumption by the use of wood chips ash in mortar mix. For the mortar with 20% substitution of Portland cement with wood chips ash, it represents 15% of CO2 and 16% of energy, as compared with the reference mortar mix. As the developed mortars possess good functional and environmental parameters the analyzed wood chips ash can be considered as an eco-efficient low-cost alternative to other pozzolans for production of blended binders.
- MeSH
- biomasa MeSH
- dřevo * MeSH
- konstrukční materiály MeSH
- minerály MeSH
- popel uhelný * MeSH
- Publikační typ
- časopisecké články MeSH