The type I restriction-modification enzyme EcoR124I comprises three subunits with the stoichiometry HsdR2/HsdM2/HsdS1. The HsdR subunits are archetypical examples of the fusion between nuclease and helicase domains into a single polypeptide, a linkage that is found in a great many other DNA processing enzymes. To explore the interrelationship between these physically linked domains, we examined the DNA translocation properties of EcoR124I complexes in which the HsdR subunits had been mutated in the RecB-like nuclease motif II or III. We found that nuclease mutations can have multiple effects on DNA translocation despite being distinct from the helicase domain. In addition to reductions in DNA cleavage activity, we also observed decreased translocation and ATPase rates, different enzyme populations with different characteristic translocation rates, a tendency to stall during initiation and altered HsdR turnover dynamics. The significance of these observations to our understanding of domain interactions in molecular machines is discussed.
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- aminokyselinové motivy MeSH
- biologický transport MeSH
- biotest MeSH
- DNA-helikasy chemie MeSH
- DNA chemie MeSH
- endonukleasy chemie MeSH
- Escherichia coli enzymologie MeSH
- kinetika MeSH
- molekulární motory chemie metabolismus MeSH
- molekulární sekvence - údaje MeSH
- mutageneze MeSH
- mutantní proteiny chemie metabolismus MeSH
- optická pinzeta MeSH
- podjednotky proteinů chemie metabolismus MeSH
- restrikční endonukleasy typu I chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- práce podpořená grantem MeSH
The Type I restriction-modification enzyme EcoR124I is an ATP-dependent endonuclease that uses dsDNA translocation to locate and cleave distant non-specific DNA sites. Bioinformatic analysis of the HsdR subunits of EcoR124I and related Type I enzymes showed that in addition to the principal PD-(E/D)xK Motifs, I, II and III, a QxxxY motif is also present that is characteristic of RecB-family nucleases. The QxxxY motif resides immediately C-terminal to Motif III within a region of predicted alpha-helix. Using mutagenesis, we examined the role of the Q and Y residues in DNA binding, translocation and cleavage. Roles for the QxxxY motif in coordinating the catalytic residues or in stabilizing the nuclease domain on the DNA are discussed.
- MeSH
- aminokyselinové motivy MeSH
- DNA metabolismus MeSH
- exodeoxyribonukleasa V chemie MeSH
- financování organizované MeSH
- kinetika MeSH
- molekulární sekvence - údaje MeSH
- mutageneze MeSH
- podjednotky proteinů chemie MeSH
- restrikční endonukleasy typu I genetika chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- substituce aminokyselin MeSH
- transport proteinů MeSH
Phosphorylation of Type I restriction-modification (R-M) enzymes EcoKI, EcoAI, and EcoR124I - representatives of IA, IB, and IC families, respectively - was analysed in vivo by immunoblotting of endogenous phosphoproteins isolated from Escherichia coli strains harbouring the corresponding hsd genes, and in vitro by a phosphorylation assay using protein kinase present in subcellular fractions of E. coli. From all three R-M enzymes, the HsdR subunit of EcoKI system was the only subunit that was phosphorylated. Further, evidence is presented that HsdR is phosphorylated in vivo only when coproduced with HsdM and HsdS subunits - as part of assembled EcoKI restriction endonuclease, while the individually produced HsdR subunit is not phosphorylated. In vitro phosphorylation of the HsdR subunit of purified EcoKI endonuclease occurs on Thr, and is strictly dependent on the addition of a catalytic amount of cytoplasmic fraction isolated from E. coli. So far this is the first case of phosphorylation of a Type I R-M enzyme reported.
- MeSH
- chromatografie na tenké vrstvě MeSH
- elektroforéza MeSH
- Escherichia coli enzymologie metabolismus MeSH
- financování organizované MeSH
- fosfoaminokyseliny metabolismus MeSH
- fosforylace MeSH
- imunoprecipitace MeSH
- podjednotky proteinů metabolismus MeSH
- proteiny z Escherichia coli metabolismus MeSH
- restrikční endonukleasy typu I metabolismus MeSH
- restrikční enzymy metabolismus MeSH
- western blotting MeSH