Persistent infection with high-risk types of human papillomaviruses (HPV) is a major cause of cervical cancer, and an important factor in other malignancies, for example, head and neck cancer. Despite recent progress in screening and vaccination, the incidence and mortality are still relatively high, especially in low-income countries. The mortality and financial burden associated with the treatment could be decreased if a simple, rapid, and inexpensive technology for HPV testing becomes available, targeting individuals for further monitoring with increased risk of developing cancer. Commercial HPV tests available in the market are often relatively expensive, time-consuming, and require sophisticated instrumentation, which limits their more widespread utilization. To address these challenges, novel technologies are being implemented also for HPV diagnostics that include for example, isothermal amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing in decentralized settings. In this review, we first evaluate current commercial HPV tests, followed by a description of advanced technologies, explanation of their principles, critical evaluation of their strengths and weaknesses, and suggestions for their possible implementation into medical diagnostics.
- MeSH
- infekce papilomavirem * komplikace MeSH
- lidé MeSH
- lidské papilomaviry MeSH
- nádory děložního čípku * MeSH
- Papillomaviridae genetika MeSH
- technologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Human papillomaviruses (HPVs) represent a diverse group of double-stranded DNA viruses associated with various types of cancers, notably cervical cancer. High-risk types of HPVs exhibit their oncogenic potential through the integration of their DNA into the host genome. This integration event contributes significantly to genomic instability and the progression of malignancy. However, traditional detection methods, such as immunohistochemistry or PCR-based assays, face inherent challenges, and thus alternative tools are being developed to fasten and simplify the analysis. Our study introduces an innovative biosensing platform that combines loop-mediated amplification with electrochemical (EC) analysis for the specific detection of HPV16 integration. By targeting key elements like the E7 mRNA, a central player in HPV integration, and the E2 viral gene transcript lost upon integration, we show clear distinction between episomal and integrated forms of HPV16. Our EC data confirmed higher E7 expression in HPV16-positive cell lines having integrated forms of viral genome, while E2 expression was diminished in cells with fully integrated genomes. Moreover, we revealed distinct expression patterns in cervical tissue of patients, correlating well with digital droplet PCR, qRT-PCR, or immunohistochemical staining. Our platform thus offers insights into HPV integration in clinical samples and facilitates further advancements in cervical cancer research and diagnostics.
- MeSH
- biosenzitivní techniky metody MeSH
- DNA vazebné proteiny genetika MeSH
- DNA virů genetika MeSH
- elektrochemické techniky * metody MeSH
- genom virový MeSH
- infekce papilomavirem * virologie MeSH
- integrace viru * genetika MeSH
- lidé MeSH
- lidský papilomavirus 16 * genetika MeSH
- messenger RNA * genetika MeSH
- nádory děložního čípku * virologie MeSH
- onkogenní proteiny virové * genetika MeSH
- Papillomavirus E7 - proteiny * genetika MeSH
- progrese nemoci MeSH
- RNA virová genetika MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Elektrochemická detekce biomolekul se neustále posouvá a má velký potenciál využití v klinické praxi. V posledních letech je kladen důraz na přesné a rychlé stanovení biomarkerů na bázi nukleových kyselin – DNA a RNA. Značná část výzkumných projektů však nereflektuje požadavky na demonstraci vyvinutých metod na klinickém materiálu, což jejich aplikační potenciál značně snižuje. Klinický materiál vnáší do výzkumu oproti modelovým vzorkům větší variabilitu a práce s ním vyžaduje specifické podmínky. Problém získávání klinického materiálu pro výzkumné účely z velké části řeší banky biologického materiálu, které mohou nabídnout vzorky a data vhodné pro konkrétní výzkumný záměr.
Precise diagnostics of cancer or other diseases is crucial when selecting proper treatment. Personalized medicine puts high demands on the accuracy of nucleic acid biomarkers analysis, where subtle differences at the nucleotide level are often involved. Isothermal amplification techniques offer new possibilities of DNA and RNA amplification without using PCR, and their combination with electrochemistry provide a promising fast and cost-effective alternative diagnostic tool. Although electrochemical biosensors are still insufficiently applied to clinical material, thus hindering their development, recent advancements show great promise in translational research. Banks of biological material (biobanks) are specialized workplaces focused on the long-term preservation and processing of clinical material and offer a wide range of expert services, primarily for research purposes, in particular the provision of biological samples and associated pseudonymized data. Their involvement in the field of electrochemical biosensors can facilitate application of electrochemical methods into clinical laboratories and expand the portfolio of currently used diagnostic methods.
- MeSH
- banky biologického materiálu MeSH
- biosenzitivní techniky metody MeSH
- elektrochemické techniky * metody MeSH
- nádorové biomarkery * analýza klasifikace MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- translační biomedicínský výzkum MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH