The fungicide vinclozolin (VZ) is in use globally and known to disrupt reproductive function in male. The present study tested the hypothesis that VZ disrupts testicular function in goldfish (Carassius auratus) by affecting brain-pituitary-testis axis. Goldfish were exposed to 100, 400 and 800 μg/L VZ and 5 μg/L 17β-estradiol (E2) for comparison. In VZ treated goldfish, 11-ketotesteosterone (11-KT) secretion was changed depending on dose and duration period of treatment. Following 7 days of exposure, 11-KT was decreased in goldfish exposed to 800 μg/L VZ, while it was increased in goldfish exposed to 100 μg/L VZ after 30 days of exposure. Circulating E2 level was unchanged in VZ treated goldfish, however the E2/11-KT ratio was increased in a concentration-related manner. In E2 treated goldfish, circulatory 11-KT and E2 levels were decreased and increased, respectively, which resulted in an increase in the E2/11-KT ratio. Exposure to VZ at 100 μg/L caused a significant increase in the circulatory luteinizing hormone (LH) after 30 days. In E2 treated fish circulatory LH was decreased, significantly. Transcripts of genes encoding gonadotropin-releasing hormone and androgen receptor in the brain, and those of genes encoding LH and follicle-stimulating hormone receptors, StAR, CYP17, and 3β-HSD in the testis changed in VZ-treated goldfish depending on concentration and period of treatment. mRNA of genes encoding vitellogenin and estrogen receptor in the liver and cytochrome P450 aromatase in the brain were increased in E2-treated goldfish. The results suggest that VZ-induced changes in 11-KT were due to disruption in brain-pituitary-testis axis and provide integrated characterization of VZ-related reproductive disorders in male fish.
- MeSH
- aromatasa metabolismus MeSH
- chemické látky znečišťující vodu aplikace a dávkování toxicita MeSH
- estradiol metabolismus MeSH
- hormon uvolňující gonadotropiny metabolismus MeSH
- hypofýza účinky léků metabolismus MeSH
- játra účinky léků metabolismus MeSH
- karas zlatý * MeSH
- oxazoly aplikace a dávkování toxicita MeSH
- rozmnožování účinky léků fyziologie MeSH
- testis účinky léků metabolismus MeSH
- vitelogeniny metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Adverse effects of bisphenol A (BPA) on reproductive physiology were studied in male goldfish (Carassius auratus) exposed to nominal environmentally relevant concentrations (0.2 and 20 µg/L) for up to 90 d. Transcriptions of various reproductive genes were measured in brain, liver, and testis to investigate the BPA modes of action. Volume, density, total number, motility, and velocity of sperm were measured to assess testicular function. At 0.2 µg/L, BPA reduced steroidogenetic acute regulatory protein and increased estrogen receptors (ERs) messenger RNA (mRNA) transcript (ERβ1 in liver and ERβ2 in testis) after 90 d. At 20 µg/L, BPA increased mRNA transcript of androgen receptor in testis, brain- and testis-specific aromatase, and vitellogenin in liver after 90, 30, 60, and 60 d, respectively. Transcripts of ERs mRNA were increased after 30 to 60 d at 20 µg/L BPA; increase in ERβ1 mRNA was observed in testis after 7 d. Total number, volume, and motility of sperm were decreased in males exposed to 0.2 and 20 µg/L BPA, whereas sperm density and velocity were only reduced at 20 µg/L BPA. The results support the hypothesis that BPA may exert both anti-androgenic and estrogenic effects, depending on concentration, leading to diminished sperm quality. The findings provide a framework for better understanding of the mechanisms mediating adverse reproductive actions of BPA observed in different parts of the world.
- MeSH
- androgenní receptory genetika metabolismus MeSH
- androgeny metabolismus MeSH
- aromatasa genetika metabolismus MeSH
- benzhydrylové sloučeniny toxicita MeSH
- estrogeny metabolismus MeSH
- fenoly toxicita MeSH
- karas zlatý MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- motilita spermií účinky léků MeSH
- orgánová specificita MeSH
- receptory pro estrogeny genetika metabolismus MeSH
- rozmnožování účinky léků genetika MeSH
- spermie cytologie účinky léků fyziologie MeSH
- testis cytologie účinky léků fyziologie MeSH
- testosteron metabolismus farmakologie MeSH
- vitelogeniny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH