BACKGROUND: The progression and recurrence are the fatal prognostic factors in glioma patients. However, the therapeutic role and potential mechanism of TRAF7 in glioma patients remain largely unknown. METHODS: TRAF7 RNA-seq was analysed with the TCGA and CGGA databases between glioma tissues and normal brain tissues. The expression of TRAF7, cellular senescence and cell cycle arrest pathways in glioma tissues and cell lines was detected by real-time quantitative PCR (RT-qPCR), western blotting and immunohistochemistry. The interaction between TRAF7 and KLF4 was determined by Co-immunoprecipitation (Co-IP) assays. The functions of TRAF7 combined with lomustine in glioma were assessed by both in vitro, in vivo and patient-derived primary and recurrent glioma stem cell (GSC) assays. RESULTS: High TRAF7 expression is closely associated with a higher recurrence rate and poorer overall survival (OS). In vitro, TRAF7 knockdown significantly inhibits glioma cell proliferation, invasion, and migration. RNA-seq analysis revealed that TRAF7 inhibition activates pathways related to cellular senescence and cell cycle arrest. In both in vitro and patient-derived GSC assays, the combination of sh-TRAF7 and lomustine enhanced therapeutic efficacy by inducing senescence and G0/G1 cell cycle arrest, surpassing the effects of lomustine or TRAF7 inhibition alone. Mechanistically, TRAF7 interacts with KLF4, and a rescue assay demonstrated that KLF4 overexpression could reverse the effects of TRAF7 depletion on proliferation and cellular senescence. In vivo, TRAF7 knockdown combined with lomustine treatment effectively suppressed glioma growth. CONCLUSION: TRAF7 could be used as a predictive biomarker and the potential therapeutic target among National Comprehensive Cancer Network (NCCN) treatment guidelines in the progression and recurrence of glioma. Lomustine, regulating cellular senescence and cell cycle could be the priority choice in glioma patients with high-level TRAF7 expression.
- MeSH
- Gene Knockdown Techniques MeSH
- Glioma * pathology genetics drug therapy metabolism MeSH
- Kruppel-Like Factor 4 MeSH
- Humans MeSH
- Neoplasm Recurrence, Local * genetics pathology MeSH
- Lomustine * pharmacology therapeutic use MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Brain Neoplasms * pathology genetics drug therapy metabolism MeSH
- Tumor Necrosis Factor Receptor-Associated Peptides and Proteins * genetics metabolism MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Cell Proliferation MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Cellular Senescence * drug effects MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH