In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
- MeSH
- fylogeneze MeSH
- lidé MeSH
- Mononegavirales * genetika MeSH
- viry * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Pneumocystis is a genus of parasitic fungi infecting lung tissues in a wide range of mammal species, displaying a strong host specificity and patterns of co-speciation with their hosts. However, a recent study on Asiatic murids challenged these patterns reporting several Pneumocystis lineages/species shared by different host species or even genera in the Rattini and Murini tribes. Here we screened lung samples of 27 species of African rodents from five families for the presence of Pneumocystis DNA. Using reconstructed multi-locus phylogenies of both hosts and parasites, we tested the hypothesis of their co-evolution. We found that Pneumocystis is widespread in African rodents, detected in all but seven screened host species, with species-level prevalence ranging from 5.9 to 100%. Several host species carry pairs of highly divergent Pneumocystis lineages/species. The retrieved co-phylogenetic signal was highly significant (p = .0017). We found multiple co-speciations, sorting events and two host-shift events, which occurred between Murinae and Deomyinae hosts. Comparison of genetic distances suggests higher substitution rates for Pneumocystis relative to the rodent hosts on neutral loci and slower rates on selected ones. We discuss life-history traits and population dynamics factors which could explain the observed results.
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- geny hub MeSH
- interakce hostitele a patogenu MeSH
- Muridae mikrobiologie MeSH
- plíce mikrobiologie MeSH
- Pneumocystis klasifikace genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
BACKGROUND: Parasite evolution is hypothesized to select for levels of parasite virulence that maximise transmission success. When host population densities fluctuate, low levels of virulence with limited impact on the host are expected, as this should increase the likelihood of surviving periods of low host density. We examined the effects of Morogoro arenavirus on the survival and recapture probability of multimammate mice (Mastomys natalensis) using a seven-year capture-mark-recapture time series. Mastomys natalensis is the natural host of Morogoro virus and is known for its strong seasonal density fluctuations. RESULTS: Antibody presence was negatively correlated with survival probability (effect size: 5-8% per month depending on season) but positively with recapture probability (effect size: 8%). CONCLUSIONS: The small negative correlation between host survival probability and antibody presence suggests that either the virus has a negative effect on host condition, or that hosts with lower survival probability are more likely to obtain Morogoro virus infection, for example due to particular behavioural or immunological traits. The latter hypothesis is supported by the positive correlation between antibody status and recapture probability which suggests that risky behaviour might increase the probability of becoming infected.
- MeSH
- analýza přežití MeSH
- Arenavirus imunologie izolace a purifikace MeSH
- chování zvířat MeSH
- infekce viry z čeledi Arenaviridae mortalita veterinární MeSH
- Murinae * MeSH
- nemoci hlodavců mortalita virologie MeSH
- protilátky virové krev MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: In order to optimize net transmission success, parasites are hypothesized to evolve towards causing minimal damage to their reservoir host while obtaining high shedding rates. For many parasite species however this paradigm has not been tested, and conflicting results have been found regarding the effect of arenaviruses on their rodent host species. The rodent Mastomys natalensis is the natural reservoir host of several arenaviruses, including Lassa virus that is known to cause Lassa haemorrhagic fever in humans. Here, we examined the effect of three arenaviruses (Gairo, Morogoro and Lassa virus) on four parameters of wild-caught Mastomys natalensis: body mass, head-body length, sexual maturity and fertility. After correcting for the effect of age, we compared these parameters between arenavirus-positive (arenavirus RNA or antibody) and negative animals using data from different field studies in Guinea (Lassa virus) and Tanzania (Morogoro and Gairo viruses). RESULTS: Although the sample sizes of our studies (1297, 749 and 259 animals respectively) were large enough to statistically detect small differences in body conditions, we did not observe any adverse effects of these viruses on Mastomys natalensis. We did find that sexual maturity was significantly positively related with Lassa virus antibody presence until a certain age, and with Gairo virus antibody presence in general. Gairo virus antibody-positive animals were also significantly heavier and larger than antibody-free animals. CONCLUSION: Together, these results suggest that the pathogenicity of arenaviruses is not severe in M. natalensis, which is likely to be an adaptation of these viruses to optimize transmission success. They also suggest that sexual behaviour might increase the probability of M. natalensis to become infected with arenaviruses.
- MeSH
- Arenavirus izolace a purifikace MeSH
- infekce přenášené vektorem * MeSH
- infekce viry z čeledi Arenaviridae patologie veterinární virologie MeSH
- Murinae fyziologie virologie MeSH
- přenašečství patologie veterinární virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Guinea MeSH
- Tanzanie MeSH
Spotted fever rickettsioses are tick-borne diseases of growing public health concern. The prevalence of rickettsia-infected ticks and their ability to parasitize humans significantly influence the risk of human infection. Altogether 466 Ixodes ricinus ticks (428 nymphs and 38 larvae) collected from 73 Lacerta schreiberi lizards were examined by PCR targeting the citrate synthetase gene gltA for the presence of Rickettsia spp. Rickettsial DNA was detected in 47% of nymphs and 31.6% of larvae. They were subsequently subjected to a second PCR reaction using primers derived from the outer membrane protein rOmpA encoding gene (ompA) to detect spotted fever group rickettsiae (SFG). This analysis shows that 41.4% of nymphs and 7.9% of larvae collected from the lizards contain DNA of SFG rickettsiae. Sequencing of 43 randomly selected samples revealed two different haplotypes, both closely related to R. monacensis (39 and 4 samples, respectively). The remaining ompA negative Rickettsia spp. samples were determined to be R. helvetica based on sequencing of ompB and gltA fragments. Our results indicate that the role of Iberian endemic lizard L. schreiberi and its ectoparasites in the ecology and epidemiology of zoonotic SFG rickettsioses may be appreciable.
- MeSH
- DNA bakterií genetika izolace a purifikace MeSH
- fylogeneze MeSH
- infestace klíšťaty parazitologie veterinární MeSH
- ještěři parazitologie MeSH
- klíště mikrobiologie MeSH
- larva mikrobiologie MeSH
- nymfa mikrobiologie MeSH
- proteiny vnější bakteriální membrány genetika metabolismus MeSH
- regulace genové exprese u bakterií fyziologie MeSH
- Rickettsia klasifikace izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We studied the effects of early weaning on immunocompetence and parasite resistance in a precocial rodent Acomys cahirinus. We hypothesized that if parasite resistance is energetically expensive and nutritional and immunological support from mothers are necessary for the long-term health of offspring, then early weaned animals would be immunologically weaker and less able to defend themselves against parasites than later weaned animals. We weaned pups at 14, 21 or 28 days after birth and assessed their immunocompetence and resistance against fleas Parapulex chephrenis when they attained adulthood. Immunocompetence was assessed using leukocyte concentration (LC) and a phytohaemagglutinin injection assay (PHA test). To estimate resistance against fleas, we measured performance of fleas via the number of produced eggs and duration of development and resistance to starvation of the flea offspring. We found a significant positive effect of weaning age on the PHA response but not on LC. The effect of age at weaning on flea egg production was manifested in male but not female hosts, with egg production being higher if a host was weaned at 14 than at 28 days. Weaning age of the host did not affect either duration of development or resistance to starvation of fleas produced by mothers fed on these hosts. We conclude that even in relatively precocial mammals, weaning age is an important indicator of future immunological responses and the ability of an animal to resist parasite infestations. Hosts weaned at an earlier age make easier, less-resistant targets for parasite infestations than hosts weaned later in life.
- MeSH
- fytohemaglutininy imunologie MeSH
- hladovění MeSH
- imunokompetence fyziologie MeSH
- infestace blechami imunologie MeSH
- interakce hostitele a parazita imunologie MeSH
- kladení vajíček fyziologie MeSH
- leukocyty imunologie MeSH
- Murinae růst a vývoj imunologie parazitologie MeSH
- odstavení * MeSH
- sexuální faktory MeSH
- Siphonaptera fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Syphacia obvelata is a common gastro-intestinal parasitic nematode of the house mouse (Mus musculus), a prime model rodent species. Investigations of the genetic structure, variability of parasite populations and other biological aspects of this host-parasite system are limited due to the lack of genetic resources for S. obvelata. To fill this gap, we developed a set of microsatellite markers for S. obvelata, using a 454 pyrosequencing approach. We designed three multiplex panels allowing genotyping of 10 polymorphic loci and scrutinized them on 42 samples from two different regions inhabited by two different house mouse subspecies (Mus musculus musculus and M. m. domesticus). The numbers of alleles ranged from 2 to 6 with mean observed heterozygosities 0.1476 and 0.2095 for domesticus and musculus worms, respectively. The described markers will facilitate further studies on population biology and co-evolution of this host-parasite system.
- MeSH
- alely MeSH
- druhová specificita MeSH
- genetická variace MeSH
- genotyp MeSH
- mikrosatelitní repetice genetika MeSH
- myši MeSH
- nematodózy parazitologie veterinární MeSH
- nemoci hlodavců parazitologie MeSH
- Oxyuroidea genetika MeSH
- populační genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH