BACKGROUND: Infectious diseases represent the greatest threats to endangered species, and transmission from humans to wildlife under increased anthropogenic pressure has been always stated as a major risk of habituation. AIMS: To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, one hundred mountain gorillas (Gorilla beringei beringei) from seven groups habituated either for tourism or for research in Volcanoes National Park, Rwanda were screened for the presence of microsporidia, Cryptosporidium spp. and Giardia spp. using molecular diagnostics. RESULTS: The most frequently detected parasites were Enterocytozoon bieneusi found in 18 samples (including genotype EbpA, D, C, gorilla 2 and five novel genotypes gorilla 4-8) and Encephalitozoon cuniculi with genotype II being more prevalent (10 cases) compared to genotype I (1 case). Cryptosporidium muris (2 cases) and C. meleagridis (2 cases) were documented in great apes for the first time. Cryptosporidium sp. infections were identified only in research groups and occurrence of E. cuniculi in research groups was significantly higher in comparison to tourist groups. No difference in prevalence of E. bieneusi was observed between research and tourist groups. CONCLUSION: Although our data showed the presence and diversity of important opportunistic protists in Volcanoes gorillas, the source and the routes of the circulation remain unknown. Repeated individual sampling, broad sampling of other hosts sharing the habitat with gorillas and quantification of studied protists would be necessary to acquire more complex data.
- MeSH
- Cryptosporidium classification genetics isolation & purification MeSH
- Encephalitozoon classification genetics isolation & purification MeSH
- Encephalitozoonosis epidemiology microbiology MeSH
- Phylogeny MeSH
- Giardia classification genetics isolation & purification MeSH
- Giardiasis epidemiology parasitology MeSH
- Hominidae MeSH
- DNA, Intergenic genetics MeSH
- Cryptosporidiosis epidemiology parasitology MeSH
- Molecular Sequence Data MeSH
- Ape Diseases epidemiology microbiology parasitology MeSH
- Parks, Recreational MeSH
- Zoonoses epidemiology microbiology parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Rwanda MeSH
In the present population-based study, we determined the prevalences of the most common human-pathogenic microsporidia, Encephalitozoon spp. and Enterocytozoon bieneusi, in asymptomatic healthy people living in the Czech Republic. A total of 382 males and females (ages, 1 to 84 years) living in the Czech Republic, of whom 265 were Czech nationals and 117 were foreign students, were included in a study testing for the presence of microsporidia by use of coprology and molecular methods. Single-species infections with Enterocytozoon bieneusi or an Encephalitozoon sp. were detected for 9 and 136 individuals, respectively. Moreover, coinfections were detected for 14 individuals. Four genotypes of 3 human-pathogenic Encephalitozoon spp. and 7 E. bieneusi genotypes, including 3 novel genotypes, were detected. Some of these were reported in humans for the first time. The highest prevalence was recorded for individuals older than 50 years and for loose, unformed stool samples. These findings clearly show that exposure to microsporidia is common among immunocompetent people and that microsporidiosis is not linked to any clinical manifestation in healthy populations.
- MeSH
- Asymptomatic Infections epidemiology MeSH
- DNA, Fungal chemistry genetics MeSH
- Adult MeSH
- Encephalitozoon classification isolation & purification MeSH
- Encephalitozoonosis epidemiology microbiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Molecular Sequence Data MeSH
- Prevalence MeSH
- Sequence Analysis, DNA MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH