The in vitro estrogen receptor (ER) reporter gene assay has long been used to measure estrogenic activity in wastewater. In a previous study, we demonstrated that the assay represents net estrogenic activity in the balance between estrogenic and antiestrogenic activities in wastewater. However, it remained unclear whether the net estrogenic activity measured by the in vitro ERα reporter gene assay can predict the in vivo estrogenic effect of wastewater. To determine this, we measured the following: estrogenic and antiestrogenic activities of wastewater and reclaimed water by the in vitro ERα reporter gene assay, expression of vitellogenin-1 (vtg1) and choriogenin-H (chgH) in male medaka (Oryzias latipes) by quantitative real-time PCR, and estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol concentrations chemically to predict estrogenic activity. The net estrogenic activity measured by the in vitro medaka ERα reporter gene assay predicted the in vivo vtg1/chgH expression in male medaka more accurately than the concentrations of estrogens. These results also mean that in vivo vtg1/chgH expression in male medaka is determined by the balance between estrogenic and antiestrogenic activities. The in vitro medaka ERα reporter gene assay also predicted in vivo vtg1/chgH expression on male medaka better than the human ERα reporter gene assay.
- MeSH
- Estrogen Receptor alpha analysis genetics metabolism MeSH
- Biological Assay methods MeSH
- Water Pollutants, Chemical analysis chemistry toxicity MeSH
- Estrogens analysis chemistry toxicity MeSH
- Gene Expression drug effects MeSH
- Oryzias MeSH
- Vitellogenins analysis metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Di-(2-ethylhexyl) phthalate (DEHP) interferes with male reproductive endocrine system in mammals, however its effects on fish reproduction are largely unknown. We evaluated sperm quality and investigated reproductive endocrine system in mature goldfish (Carassius auratus) exposed to nominal 1, 10, and 100μg/L DEHP. To examine DEHP estrogenic activity, one group of goldfish was exposed to 17β-estradiol (5μg/L E2) for comparison. Following 30d of exposure, sperm production was decreased and suppressed in DEHP and E2 treated goldfish, respectively. Sperm motility and velocity were decreased in goldfish exposed to 100 and 10μg/L DEHP at 15s post-sperm activation, respectively. Compared to control, 11-ketotestosterone (11-KT) levels were decreased at 10 and 1μg/L DEHP at day 15 and 30, respectively. In E2 treated goldfish, 11-KT levels were decreased compared to control during the period of exposure. E2 levels were increased in goldfish exposed to E2, but remained unchanged in DEHP treated goldfish during the period of exposure. StAR mRNA levels encoding regulator of cholesterol transfer to steroidogenesis were decreased in DEHP and E2 treated goldfish following 15 and 30d of exposure, respectively. Luteinizing hormone (LH) levels were decreased in DEHP and E2 treated goldfish following 15 and 30d of exposure, respectively. In DEHP treated goldfish, gnrh3, kiss1 and its receptor (gpr54) mRNA levels did not change during the experimental period. In E2 treated goldfish, gnrh3 mRNA levels were decreased at day 7, but kiss1 and gpr54 mRNA levels were increased at day 30 of exposure. The mRNA levels of genes encoding testicular LH and androgen receptors remained unchanged in DEHP and E2 treated goldfish. In contrast to E2 treated goldfish, vitellogenin production was not induced in DEHP treated goldfish and mRNA levels of genes with products mediating estrogenic effects remained unchanged or decreased. In conclusion, DEHP interferes with testis and pituitary hormonal functions to reduce sperm quality in goldfish and does not exhibit estrogenic activity.
- MeSH
- Receptors, Androgen genetics metabolism MeSH
- Water Pollutants, Chemical chemistry toxicity MeSH
- Diethylhexyl Phthalate toxicity MeSH
- Estradiol pharmacology MeSH
- Gonadotropin-Releasing Hormone MeSH
- Pituitary Gland drug effects metabolism MeSH
- Immunoassay MeSH
- Goldfish metabolism MeSH
- Kisspeptins genetics metabolism MeSH
- Pyrrolidonecarboxylic Acid analogs & derivatives MeSH
- Humans MeSH
- Luteinizing Hormone analysis MeSH
- RNA, Messenger metabolism MeSH
- Sperm Motility drug effects MeSH
- Receptors, G-Protein-Coupled genetics metabolism MeSH
- Spermatozoa drug effects physiology MeSH
- Testis drug effects metabolism MeSH
- Testosterone analogs & derivatives analysis MeSH
- Vitellogenins analysis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH