FIDENTIS
Dotaz
Zobrazit nápovědu
Human face is a dynamic system where facial expressions can rapidly modify geometry of facial features. Facial expressions are believed to be universal across world populations, but only a few studies have explored whether grimacing is sexually dimorphic and if so to what extent. The present paper explores inter- and intra-individual variation of human facial expressions with respect to individual's sex based on a set of neutral and expression-varying 3D facial scans. The study sample composed of 20 individuals (10 males and 10 females) for whom 120 scans featuring grimaces associated with disgust, surprise, "u" sound, smile and wide smile were collected by an optical scanner Vectra XT. In order to quantify the dissimilarity among 3D images, surface comparison approach based on aligned 3D meshes and closest point-to-point distances was carried out in Fidentis Analyst application. The study revealed that sexual dimorphism was indeed one of the factors which determined the extent and characteristics of facial deformations recorded for the studied expressions. In order to produce a grimace, males showed a tendency towards extending their facial movements while females were generally more restrained. Furthermore, the facial movements linked to the wide smile and "u" sound were revealed as the most extensive relative to the other expressions, while the smile and surprise were shown indistinguishable from the neutral face.
- MeSH
- analýza rozptylu MeSH
- anatomické modely MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- obličej anatomie a histologie MeSH
- pohlavní dimorfismus * MeSH
- usmívání se MeSH
- výraz obličeje * MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The present paper aims to test performances of semi-automatic tools for mesh-to-mesh processing while assessing sex and ancestry in documented human crania. The studied sample of 80 human crania, which originated in two documented Brazilian collections (São Paulo, Brazil) was digitized using photogrammetry and laser scanning. 3D cranial morphology was quantified by computing inter-mesh dissimilarity measures using in-house freeware FIDENTIS Analyst (www.fidentis.com). Numerical outputs were further processed using Discriminant Function Analysis and Canonical Variant Analysis in order to classify models into sex and ancestry groups. In addition, cranial morphology was described by a set of 37 landmarks, processed by a Procrustes analysis and confronted with the inter-mesh comparison. Patterns of sexual dimorphism and ancestral group-specific variation were interpreted using average meshes and further emphasized by employing advanced visualization graphics. The mesh-to-mesh processing was capable to detect shape differences related to sex and ancestry. The highest accuracy levels for sex determination were obtained for meshes representing the facial skeleton and the supraorbital region. For both, analysis correctly assigned 82.5% of the crania. Ancestry-related differences were manifested primarily in the global cranial features (observed accuracy rates reaching 63%). The advanced visualization tools provided a highly informative insight into sexual dimorphism and ancestry-related variation. While in the current state the technique cannot be considered suitable for being implemented into the everyday forensic practice, the extent of automatization proved to be perspective, especially for assessing skeletal features that cannot be properly quantified using discrete variables.
- MeSH
- dospělí MeSH
- lebka anatomie a histologie MeSH
- lidé MeSH
- soudní antropologie * MeSH
- určení pohlaví podle kostry metody MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
BACKGROUND: Developmental instability is a component of non-genetic variation that results from random variation in developmental processes. It is considered a sensitive indicator of the physiological state of individuals. It is reflected in various ways, but in this study we focussed on its reflection in fluctuating asymmetry (FA) and morphological integration. AIM: To assess how, if at all, variations of facial morphology mirror developmental instability across childhood with respect to sex, growth rate and socioeconomic/environmental factors. SUBJECTS AND METHODS: A set of 210 three-dimensional facial models (of children aged between 6.3 and 14.3 years) originating from the FIDENTIS 3D Face Database was subjected to landmark-based methods of geometric morphometrics to quantify the degree of facial asymmetry and facial morphological integration. In addition, the association with age, sex, and socioeconomic factors was assessed. RESULTS: Our results showed a nonlinear increase of FA with age up to the age of 14 years. The pattern of sex-related variants in facial FA differed in relation to age, as girls exhibited higher values of FA than boys up to the age of 9 years. We found that a signal of modularity based on functional demands and organisation of the face is of particular importance. Here, girls exhibited higher morphological covariation among modules. During more rapid adolescence-related growth, however, covariation among modules at the asymmetrical level decreased in both sexes. CONCLUSION: We can conclude that facial morphology was shown to be strongly integrated, particularly until adolescence. This covariation can facilitate an increase of FA. In addition, the results of this study indicate there is a weak association between socioeconomic stress and facial asymmetries. In contrast, sex and growth rate are reflected in developmental instability.
Three-dimensional facial images are becoming more and more widespread. As such images provide more information about facial morphology than 2D imagery, they show great promise for use in future forensic applications, including age estimation and verification. This paper proposes an approach using random forests, a machine learning method, to develop and test models for classification of legal age thresholds (15 years and 18 years) using 3D facial landmarks. Our approach was developed on a set of 3D facial scans from 394 Czech individuals (194 males and 200 females) aged between 10 and 25 years. The dataset was retrieved from a sizable database of Central European faces - The FIDENTIS 3D Face Database. Three main types of input variables were processed using random forests: I) shape (size-invariant) coordinates of 3D landmarks, II) size and shape coordinates of 3D landmarks, and III) inter-landmark distances, angles and indices. The performance rates for the combinations of variables and age threshold were expressed in terms of sensitivity and specificity. The overall accuracy rates varied from 71.4%-91.5% (when the male and female samples were pooled). In general, higher accuracy was achieved for the age limit of 18 years than for 15 years. Whereas size-variant variables showed a better performance rate for the age limit of 15 years, the size-invariant variables (i.e., shape variables) were better for classifying individuals under 18 years. The verification models grounded on traditional variables (distances, angles, indices) yielded consistently higher performance rates on females than on males, whereas the inverse trend was observed for the models built on 3D coordinates. The results indicate that age verification based on 3D facial data with processing by the random forests method has high potential for further forensic or biometric applications.
- MeSH
- anatomická značka * MeSH
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- obličej anatomie a histologie MeSH
- počítačové zpracování obrazu MeSH
- průřezové studie MeSH
- strojové učení * MeSH
- určení kostního věku metody MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH