The impacts of climate change on human health are often underestimated or perceived to be in a distant future. Here, we present the projected impacts of climate change in the context of COVID-19, a recent human health catastrophe. We compared projected heat mortality with COVID-19 deaths in 38 cities worldwide and found that in half of these cities, heat-related deaths could exceed annual COVID-19 deaths in less than ten years (at + 3.0 °C increase in global warming relative to preindustrial). In seven of these cities, heat mortality could exceed COVID-19 deaths in less than five years. Our results underscore the crucial need for climate action and for the integration of climate change into public health discourse and policy.
- MeSH
- COVID-19 * mortalita epidemiologie MeSH
- klimatické změny * MeSH
- lidé MeSH
- SARS-CoV-2 * izolace a purifikace MeSH
- velkoměsta MeSH
- veřejné zdravotnictví MeSH
- vysoká teplota * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- velkoměsta MeSH
Climate change affects human health; however, there have been no large-scale, systematic efforts to quantify the heat-related human health impacts that have already occurred due to climate change. Here, we use empirical data from 732 locations in 43 countries to estimate the mortality burdens associated with the additional heat exposure that has resulted from recent human-induced warming, during the period 1991-2018. Across all study countries, we find that 37.0% (range 20.5-76.3%) of warm-season heat-related deaths can be attributed to anthropogenic climate change and that increased mortality is evident on every continent. Burdens varied geographically but were of the order of dozens to hundreds of deaths per year in many locations. Our findings support the urgent need for more ambitious mitigation and adaptation strategies to minimize the public health impacts of climate change.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.
OBJECTIVE: To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. DESIGN: Two stage time series analysis. SETTING: 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. POPULATION: Deaths for all causes or for external causes only registered in each city within the study period. MAIN OUTCOME MEASURES: Daily total mortality (all or non-external causes only). RESULTS: A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 µg/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 µg/m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 µg/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. CONCLUSIONS: Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.
- MeSH
- celosvětové zdraví statistika a číselné údaje MeSH
- environmentální politika MeSH
- klimatické změny mortalita MeSH
- lidé MeSH
- mezinárodní spolupráce MeSH
- mortalita * MeSH
- ozon škodlivé účinky analýza MeSH
- roční období MeSH
- velkoměsta MeSH
- vystavení vlivu životního prostředí škodlivé účinky normy MeSH
- znečištění ovzduší škodlivé účinky analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- velkoměsta MeSH