"20225" Dotaz Zobrazit nápovědu
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
- MeSH
- dilatační kardiomyopatie genetika metabolismus patologie MeSH
- Duchennova muskulární dystrofie genetika metabolismus patologie MeSH
- dystrofin nedostatek genetika MeSH
- kardiomyocyty metabolismus patologie MeSH
- kardiovaskulární systém metabolismus patologie MeSH
- kmenové buňky metabolismus patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myokard metabolismus patologie MeSH
- myši inbrední mdx genetika MeSH
- myši MeSH
- poškození DNA genetika MeSH
- protoonkogenní proteiny c-kit genetika MeSH
- regulace genové exprese genetika MeSH
- stárnutí genetika patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Numerous protocols of cardiac differentiation have been established by essentially focusing on specific growth factors on human pluripotent stem cell (hPSC) differentiation efficiency. However, the optimal environmental factors to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Here, we hypothesized that low oxygen exposure enhances the molecular and functional maturity of the cardiomyocytes. We aimed at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hPSCs in 2D- and 3D-based protocols. hPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed. The mitochondrial localization and metabolic properties were evaluated. The intracellular Ca2+ handling and contractile properties were also monitored. The 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac spheroids containing hPSC-CMs in LOE further exhibited cardiac markers, hypertrophy, steadier SR Ca2+ release properties revealing a better SR Ca2+ handling, and enhanced contractile force. Preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Our results brought evidences that LOE is moderately beneficial for the 3D cardiac spheroids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE.
- MeSH
- biologické markery MeSH
- buněčná diferenciace * MeSH
- buněčné kultury MeSH
- buněčné sféroidy MeSH
- exprese genu MeSH
- kardiomyocyty cytologie metabolismus MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- pluripotentní kmenové buňky cytologie metabolismus MeSH
- sarkoplazmatické retikulum metabolismus MeSH
- srdeční mitochondrie metabolismus MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH