INTRODUCTION: The inflammatory process in Crohn's disease (CD) is closely associated with the formation of reactive oxygen species. Antioxidant enzymes can play an important role in the outcome of CD and may influence postoperative recurrence in these patients. The aim of our study was to evaluate gene expression of intracellular antioxidant enzymes in surgically resected intestinal specimens of patients with CD, both in macroscopically normal and in inflamed tissue. METHODS: A total of 28 patients referred for elective bowel resection were enrolled in the study. Full-thickness small intestinal specimens were investigated. Gene expression of antioxidant enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GSR) - was evaluated both in macroscopically normal and inflamed samples. RESULTS: There were significantly lower levels of SOD1 mRNA (p = 0.007) and GSR mRNA (p = 0.027) in inflamed tissue compared to macroscopically normal areas. No significant differences were found between affected and non-affected intestinal segments in mRNA for SOD2, SOD3 and GPX. CONCLUSIONS: Our pilot data clearly showed that the gene expression of major antioxidant enzymes is not a uniform mechanism in the pathogenesis of Crohn's disease. Topically decreased gene expression of SOD1 and GSR might facilitate the segmental tissue injury caused by reactive oxygen species.
- MeSH
- Antioxidants * MeSH
- Crohn Disease * genetics metabolism MeSH
- Gene Expression * MeSH
- Glutathione Peroxidase genetics MeSH
- Humans MeSH
- RNA, Messenger genetics MeSH
- Reactive Oxygen Species MeSH
- Intestines MeSH
- Superoxide Dismutase-1 * genetics metabolism MeSH
- Superoxide Dismutase genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
3-Quinuclidinyl benzilate (BZ) ranks among incapacitating military warfare agents. It acts as a competitive inhibitor on muscarinic receptors leading to non-lethal mental impairment. The present study aimed to investigate toxicokinetics of BZ in rats. Moreover, BZ can be exploited to produce a pharmacological model of Alzheimer's disease; thus, this paper focuses mainly on the BZ distribution to the brain. Wistar rats were administered i.p. with BZ (2 and 10 mg/kg). The BZ concentration was determined using LC-MS/MS in plasma, urine, bile, brain, kidney and liver. The sample preparation was based on a solid phase extraction (liquids) or protein precipitation (organ homogenates). The plasma concentration peaked at 3 min (204.5 ± 55.4 and 2185.5 ± 465.4 ng/ml). The maximal concentration in the brain was reached several minutes later. Plasma elimination half-life was 67.9 ± 3.4 in the 2 mg/kg group and 96.6 ± 27.9 in the 10 mg/kg group. BZ concentrations remained steady in the brain, with slow elimination (t1/2 506.9 ± 359.5 min). Agent BZ is excreted mainly via the urine. Steady BZ concentration in the brain could explain the previously published duration of the significant impairment in passive avoidance tasks in rats after an injection of BZ.
- MeSH
- Muscarinic Antagonists blood metabolism toxicity urine MeSH
- Quinuclidinyl Benzilate blood metabolism toxicity urine MeSH
- Rats MeSH
- Metabolome MeSH
- Urine MeSH
- Brain metabolism MeSH
- Rats, Wistar MeSH
- Toxicokinetics MeSH
- Bile metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH