EEA1 Dotaz Zobrazit nápovědu
Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments.
- MeSH
- buněčné linie MeSH
- časové faktory MeSH
- elektronová mikroskopie MeSH
- endozomy metabolismus virologie MeSH
- financování organizované MeSH
- fúze membrán MeSH
- kaveolin 1 genetika metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- myši MeSH
- Polyomavirus fyziologie MeSH
- rab proteiny vázající GTP metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- transferin metabolismus MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- virion metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
EGF complexed to fluorescent photostable quantum dots by biotin-streptavidin system (bEGF-savQD) is attractive for both the basic research and therapeutic application such as targeted drug delivery in EGF-receptor (EGFR) expressing cancers. However, compared to native EGF, the large size of QD and its quasi-multivalency can have unpredictable effects on EGFR endocytosis changing the internalization portal and/or endosomal processing tightly bound to EGF signaling. We have found that bEGF-savQDs enter HeLa cells via the temperature-dependent clathrin-mediated EGF-receptor-specific pathway characteristic for native EGF. We also found that EGF-to-QD concentration ratios used for the complex preparation and the level of EGF receptor expression affect the number and integral densities of the formed endosomes. So, at EGF-to-QD ratio from 4:1 to 12:1 (at nanomolar bEGF concentrations) on average 100 bright endosomes per HeLa cell were formed 15 min after the complex addition, while 1:1 ratio resulted in formation of very few dim endosomes. However, in A431 cells overexpressing EGFR 1:1 ratio was effective. Using dynamin inhibition and Na-acidic washout we showed that bEGF-savQDs bind surface receptors and enter clathrin-coated pits slower than the same ligands without QD. Yet, the bEGF-savQD demonstrated similar to native EGF and bEGF-savCy3 co-localization dynamics with tethering protein EEA1 and HRS, the key component of sorting ESCRT0 complex. In conclusion, our comparative study reveals that in respect to entrapment into coated pits, endosomal recruitment, endosome fusions, and the initial steps of endosomal maturation, bEGF-savQD behaves like native EGF and QD implementation does not affect these important events.
- MeSH
- endocytóza fyziologie MeSH
- erbB receptory analýza metabolismus MeSH
- HeLa buňky MeSH
- kultivované buňky MeSH
- kvantové tečky * MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH