Intini, Francesco P*
Dotaz
Zobrazit nápovědu
The current work investigates the effect of new bifunctional and mononuclear Pt(II) compounds, the cis- and trans-isomers of [PtCl2(NH3)(L)] (L = 1-methyl-7-azaindole, compounds 1 and 2, respectively), on growth and viability of human carcinoma cells as well as their putative mechanism(s) of cytotoxicity. The results show that substitution of 1-methyl-7-azaindole for ammine in cisplatin or transplatin results in an increase of the toxic efficiency, selectivity for tumor cells in cisplatin-resistant cancer cells, and activation of the trans geometry. The differences in the cytotoxic activities of 1 and 2 were suggested to be due to their different DNA binding mode, different capability to induce cell cycle perturbations, and fundamentally different role of transcription factor p53 in their mechanism of action. Interestingly, both isomers make it possible to detect their cellular uptake and distribution in living cells by confocal microscopy without their modification with an optically active tag.
- MeSH
- apoptóza účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- cisplatina analogy a deriváty MeSH
- DNA metabolismus MeSH
- indoly chemie MeSH
- lidé MeSH
- nádorový supresorový protein p53 fyziologie MeSH
- organoplatinové sloučeniny chemická syntéza chemie farmakologie MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nuclear Magnetic Resonance (NMR) is an analytical technique extensively used in almost every chemical laboratory for structural identification. This technique provides statistically equivalent signals in spite of using spectrometer with different hardware features and is successfully used for the traceability and quantification of analytes in food samples. Nevertheless, to date only a few internationally agreed guidelines have been reported on the use of NMR for quantitative analysis. The main goal of the present study is to provide a methodological pipeline to assess the reproducibility of NMR data produced for a given matrix by spectrometers from different manufacturers, with different magnetic field strengths, age and hardware configurations. The results have been analyzed through a sequence of chemometric tests to generate a community-built calibration system which was used to verify the performance of the spectrometers and the reproducibility of the predicted sample concentrations.