NDUFS2
Dotaz
Zobrazit nápovědu
Hypoxic pulmonary vasoconstriction (HPV) rapidly and reversibly matches lung ventilation (V) and perfusion (Q), optimizing oxygen uptake and systemic oxygen delivery. HPV occurs in small pulmonary arteries (PA), which uniquely constrict to hypoxia. Although HPV is modulated by the endothelium the core mechanism of HPV resides in PA smooth muscle cells (PASMC). The PASMC's mitochondrial oxygen sensor lies within the electron transport chain (ETC) and includes NDUFS2 in ETC Complex-I. PASMC mitochondria respond to hypoxia by varying production of reactive oxygen species (ROS) and hydrogen peroxide in proportion to alveolar oxygen tension. Hypoxic ROS inhibition results in a state of reduction which triggers a redox-mediated inhibition of oxygen-sensitive, voltage-gated, potassium channels, including Kv1.5 and Kv2.1. Kv channel inhibition depolarizes the PASMC, opening of large-conductance calcium channels (CaL), elevating cytosolic calcium and activating the contractile apparatus. HPV is strongest in small PAs where sensors (hypoxia-responsive mitochondria) and effectors (oxygen-sensitive K+ channels) are enriched. Oxygenation at birth reverses fetal HPV, contributing to the rapid neonatal drop in pulmonary vascular resistance (PVR). A similar mitochon-drial-K+ channel sensor-effector mechanism exists in the ductus arteriosus (DA), however in DASMC it is oxygen-induced increases in mitochondrial ROS that inhibit DASMC K+ channels, causing DA constriction. Atelectasis and pneumonia elicit HPV, which optimises V/Q matching, increasing systemic oxygenation. Whilst HPV in response to localized hypoxia in a single lung lobe does not increase PA pressure; global airway hypoxia, as occurs with altitude or sleep apnea, causes pulmonary hypertension. HPV can be inhibited by drugs, including calcium channel blockers, or used to maintain a dry operative field during single lung anesthesia for lung surgery. HPV does not normally cause lung edema but excessive, heterogenous HPV contributes to high altitude pulmonary edema. HPV is suppressed in COVID-19 pneumonia by a SARS-CoV-2 mitochondriopathy. HPV is a component of the body's homeostatic oxygen sensing system. Keywords: Ductus arteriosus, Redox, NDUFS2, Oxygen sensitive potassium, Channels, High altitude pulmonary edema (HAPE), Mitochondrial electron transport chain, COVID-19 pneumonia, Atelectasis.
- MeSH
- arteria pulmonalis metabolismus MeSH
- COVID-19 metabolismus komplikace MeSH
- homeostáza * fyziologie MeSH
- hypoxie * metabolismus patofyziologie MeSH
- kyslík * metabolismus MeSH
- lidé MeSH
- vazokonstrikce * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondrial dysfunctions belong amongst the most common metabolic diseases but the signalling networks that lead to the manifestation of a disease phenotype are often not well understood. We identified the subunits of respiratory complex I, III and IV as mediators of major signalling changes during Drosophila wing disc development. Their downregulation in larval wing disc leads to robust stimulation of TOR activity, which in turn orchestrates a complex downstream signalling network. Specifically, after downregulation of the complex I subunit ND-49 (mammalian NDUFS2), TOR activates JNK to induce cell death and ROS production essential for the stimulation of compensatory apoptosis-induced proliferation within the tissue. Additionally, TOR upregulates Notch and JAK/STAT signalling and it directs glycolytic switch of the target tissue. Our results highlight the central role of TOR signalling in mediating the complex response to mitochondrial respiratory dysfunction and they provide a rationale why the disease symptoms associated with respiratory dysfunctions are often alleviated by mTOR inhibitors.
- MeSH
- down regulace MeSH
- Drosophila MeSH
- Janus kinasy metabolismus MeSH
- křídla zvířecí růst a vývoj metabolismus MeSH
- proteiny Drosophily genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- receptory Notch metabolismus MeSH
- respirační komplex I genetika metabolismus MeSH
- signální transdukce * MeSH
- transkripční faktory STAT metabolismus MeSH
- tyrosinkinasové receptory metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH