PI4P
Dotaz
Zobrazit nápovědu
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a critically important regulatory lipid of the plasma membrane (PM); however, little is known about how cells regulate PM PI(4,5)P2 levels. Here, we show that the phosphatidylinositol 4-phosphate (PI4P)/phosphatidylserine (PS) transfer activity of the endoplasmic reticulum (ER)-resident ORP5 and ORP8 is regulated by both PM PI4P and PI(4,5)P2 Dynamic control of ORP5/8 recruitment to the PM occurs through interactions with the N-terminal Pleckstrin homology domains and adjacent basic residues of ORP5/8 with both PI4P and PI(4,5)P2 Although ORP5 activity requires normal levels of these inositides, ORP8 is called on only when PI(4,5)P2 levels are increased. Regulation of the ORP5/8 attachment to the PM by both phosphoinositides provides a powerful means to determine the relative flux of PI4P toward the ER for PS transport and Sac1-mediated dephosphorylation and PIP 5-kinase-mediated conversion to PI(4,5)P2 Using this rheostat, cells can maintain PI(4,5)P2 levels by adjusting the availability of PI4P in the PM.
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- fosfatidylseriny metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem metabolismus MeSH
- HEK293 buňky MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- proteinové domény MeSH
- steroidní receptory chemie metabolismus MeSH
- substrátová specifita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
Phosphatidylinositol 4-phosphate (PI4P) is the most abundant monophosphoinositide in eukaryotic cells. Humans have four phosphatidylinositol 4-kinases (PI4Ks) that synthesize PI4P, among which are PI4K IIβ and PI4K IIα. In this study, two crystal structures are presented: the structure of human PI4K IIβ and the structure of PI4K IIα containing a nucleoside analogue. The former, a complex with ATP, is the first high-resolution (1.9 Å) structure of a PI4K. These structures reveal new details such as high conformational heterogeneity of the lateral hydrophobic pocket of the C-lobe and together provide a structural basis for isoform-specific inhibitor design.
- MeSH
- 1-fosfatidylinositol-4-kinasa antagonisté a inhibitory chemie metabolismus MeSH
- adenosintrifosfát metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- inhibitory proteinkinas chemie farmakologie MeSH
- katalytická doména MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- nukleosidy chemie farmakologie MeSH
- protein - isoformy antagonisté a inhibitory chemie metabolismus MeSH
- racionální návrh léčiv * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.
- MeSH
- 1-fosfatidylinositol-4-kinasa antagonisté a inhibitory metabolismus MeSH
- antivirové látky farmakologie MeSH
- buněčná membrána metabolismus MeSH
- lidé MeSH
- trans-Golgiho síť účinky léků MeSH
- transport proteinů účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Most single stranded plus RNA viruses hijack phosphatidylinositol 4-kinases (PI4Ks) to generate membranes highly enriched in phosphatidylinositol 4-phosphate (PI4P). These membranous compartments known as webs, replication factories or replication organelles are essential for viral replication because they provide protection from the innate intracellular immune response while serving as platforms for viral replication. Using purified recombinant proteins and biomimetic model membranes we show that the nonstructural viral 3A protein is sufficient to promote membrane hyper-phosphorylation given the proper intracellular cofactors (PI4KB and ACBD3). However, our bio-mimetic in vitro reconstitution assay revealed that rather than the presence of PI4P specifically, negative charge alone is sufficient for the recruitment of 3Dpol enzymes to the surface of the lipid bilayer. Additionally, we show that membrane tethered viral 3B protein (also known as Vpg) works in combination with the negative charge to increase the efficiency of membrane recruitment of 3Dpol.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- buněčná membrána metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem genetika metabolismus MeSH
- Kobuvirus enzymologie MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- pikornavirové infekce metabolismus virologie MeSH
- virové nestrukturální proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The minor phospholipid, phosphatidylinositol 4-phosphate (PI4P), is emerging as a key regulator of lipid transfer in ER-membrane contact sites. Four different phosphatidylinositol 4-kinase (PI4K) enzymes generate PI4P in different membrane compartments supporting distinct cellular processes, many of which are crucial for the maintenance of cellular integrity but also hijacked by intracellular pathogens. While type III PI4Ks have been targeted by small molecular inhibitors, thus helping decipher their importance in cellular physiology, no inhibitors are available for the type II PI4Ks, which hinders investigations into their cellular functions. Here, we describe the identification of small molecular inhibitors of PI4K type II alpha (PI4K2A) by implementing a large scale small molecule high-throughput screening. A novel assay was developed that allows testing of selected inhibitors against PI4K2A in intact cells using a bioluminescence resonance energy transfer approach adapted to plate readers. The compounds disclosed here will pave the way to the optimization of PI4K2A inhibitors that can be used in cellular and animal studies to better understand the role of this enzyme in both normal and pathological states.
- MeSH
- 1-fosfatidylinositol-4-kinasa antagonisté a inhibitory chemie metabolismus MeSH
- biologický transport MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- endozomy účinky léků metabolismus MeSH
- Golgiho aparát účinky léků metabolismus MeSH
- HEK293 buňky MeSH
- inhibitory enzymů metabolismus farmakologie MeSH
- konformace proteinů MeSH
- lidé MeSH
- preklinické hodnocení léčiv MeSH
- rychlé screeningové testy * MeSH
- simulace molekulového dockingu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Phosphatidylinositol 4-kinase beta (PI4KB) is one of four human PI4K enzymes that generate phosphatidylinositol 4-phosphate (PI4P), a minor but essential regulatory lipid found in all eukaryotic cells. To convert their lipid substrates, PI4Ks must be recruited to the correct membrane compartment. PI4KB is critical for the maintenance of the Golgi and trans Golgi network (TGN) PI4P pools, however, the actual targeting mechanism of PI4KB to the Golgi and TGN membranes is unknown. Here, we present an NMR structure of the complex of PI4KB and its interacting partner, Golgi adaptor protein acyl-coenzyme A binding domain containing protein 3 (ACBD3). We show that ACBD3 is capable of recruiting PI4KB to membranes both in vitro and in vivo, and that membrane recruitment of PI4KB by ACBD3 increases its enzymatic activity and that the ACBD3:PI4KB complex formation is essential for proper function of the Golgi.
- MeSH
- adaptorové proteiny signální transdukční chemie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem chemie metabolismus MeSH
- Golgiho aparát metabolismus MeSH
- lidé MeSH
- membránové proteiny chemie metabolismus MeSH
- molekulární modely MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- sekundární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking, and polarity. Here, we explore which are the lipids that control membrane electrostatics using plants as a model. We show that phosphatidylinositol-4-phosphate (PI4P), phosphatidic acidic (PA), and phosphatidylserine (PS) are separately required to generate the electrostatic signature of the plant PM. In addition, we reveal the existence of an electrostatic territory that is organized as a gradient along the endocytic pathway and is controlled by PS/PI4P combination. Altogether, we propose that combinatorial lipid composition of the cytosolic leaflet of organelles not only defines the electrostatic territory but also distinguishes different functional compartments within this territory by specifying their varying surface charges.
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- buněčná membrána metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- fosfatidylseriny metabolismus MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- kyseliny fosfatidové metabolismus MeSH
- organely MeSH
- proteiny huseníčku metabolismus MeSH
- signální transdukce MeSH
- statická elektřina * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is responsible for the synthesis of the Golgi and trans-Golgi network (TGN) pool of phosphatidylinositol 4-phospahte (PI4P). PI4P is the defining lipid hallmark of Golgi and TGN and also serves as a signaling lipid and as a precursor for higher phosphoinositides. In addition, PI4KB is hijacked by many single stranded plus RNA (+RNA) viruses to generate PI4P-rich membranes that serve as viral replication organelles. Given the importance of this enzyme in cells, it has to be regulated. 14-3-3 proteins bind PI4KB upon its phosphorylation by protein kinase D, however, the structural basis of PI4KB recognition by 14-3-3 proteins is unknown. Here, we characterized the PI4KB:14-3-3 protein complex biophysically and structurally. We discovered that the PI4KB:14-3-3 protein complex is tight and is formed with 2:2 stoichiometry. Surprisingly, the enzymatic activity of PI4KB is not directly modulated by 14-3-3 proteins. However, 14-3-3 proteins protect PI4KB from proteolytic degradation in vitro. Our structural analysis revealed that the PI4KB:14-3-3 protein complex is flexible but mostly within the disordered regions connecting the 14-3-3 binding site of the PI4KB with the rest of the PI4KB enzyme. It also predicted no direct modulation of PI4KB enzymatic activity by 14-3-3 proteins and that 14-3-3 binding will not interfere with PI4KB recruitment to the membrane by the ACBD3 protein. In addition, the structural analysis explains the observed protection from degradation; it revealed that several disordered regions of PI4KB become protected from proteolytical degradation upon 14-3-3 binding. All the structural predictions were subsequently biochemically validated.
- MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem chemie MeSH
- interakční proteinové domény a motivy MeSH
- konformace proteinů, alfa-helix MeSH
- krystalografie rentgenová MeSH
- kvarterní struktura proteinů MeSH
- lidé MeSH
- maloúhlový rozptyl MeSH
- molekulární modely MeSH
- proteiny 14-3-3 chemie MeSH
- proteolýza MeSH
- vazba proteinů MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited a β-barrel fold composed of anti-parallel β-strands, with three α-helices replacing β-strands on one side. This mixed alpha-beta structure was consistent with previously solved structures of ORP2 and ORP3. A large cavity (≈1860 Å3) within the barrel was identified as the lipid-binding site. Although we were not able to obtain a lipid-bound structure, we used computer simulations based on our crystal structure to dock PS and PI4P molecules into the putative lipid-binding site of the ORD8. Comparative experiments between the short ORD8ΔLid (used for crystallography) and the full-length ORD8 (lid containing) revealed the lid's importance for stable lipid binding. Fluorescence assays revealed different transport efficiencies for PS and PI4P, with the lid slowing down transport and stabilizing cargo. Coarse-grained simulations highlighted surface-exposed regions and hydrophobic interactions facilitating lipid bilayer insertion. These findings enhance our comprehension of ORD8, its structure, and lipid transport mechanisms, as well as provide a structural basis for the design of potential inhibitors.
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is a key enzyme of the Golgi system because it produces its lipid hallmark - the phosphatidylinositol 4-phosphate (PI4P). It is recruited to Golgi by the Golgi resident ACBD3 protein, regulated by 14-3-3 proteins and it also serves as an adaptor because it recruits the small GTPase Rab11. Here, we analyzed the protein complexes formed by PI4KB in vitro using small angle x-ray scattering (SAXS) and we discovered that these protein complexes are highly flexible. The 14-3-3:PI4KB:Rab11 protein complex has 2:1:1 stoichiometry and its different conformations are rather compact, however, the ACBD3:PI4KB protein complex has both, very compact and very extended conformations. Furthermore, in vitro reconstitution revealed that the membrane is necessary for the formation of ACBD3:PI4KB:Rab11 protein complex at physiological (nanomolar) concentrations.
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem metabolismus MeSH
- intracelulární membrány metabolismus MeSH
- maloúhlový rozptyl MeSH
- membránové proteiny metabolismus MeSH
- multimerizace proteinu * MeSH
- proteiny 14-3-3 metabolismus MeSH
- rab proteiny vázající GTP metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH