-
Je něco špatně v tomto záznamu ?
Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport
A. Eisenreichova, M. Klima, MM. Anila, A. Koukalova, J. Humpolickova, B. Różycki, E. Boura
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2012
Free Medical Journals
od 2012
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2012-03-01
Open Access Digital Library
od 2012-01-01
Open Access Digital Library
od 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2012
PubMed
37566053
DOI
10.3390/cells12151974
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- lipidy * chemie MeSH
- transportní proteiny * metabolismus MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited a β-barrel fold composed of anti-parallel β-strands, with three α-helices replacing β-strands on one side. This mixed alpha-beta structure was consistent with previously solved structures of ORP2 and ORP3. A large cavity (≈1860 Å3) within the barrel was identified as the lipid-binding site. Although we were not able to obtain a lipid-bound structure, we used computer simulations based on our crystal structure to dock PS and PI4P molecules into the putative lipid-binding site of the ORD8. Comparative experiments between the short ORD8ΔLid (used for crystallography) and the full-length ORD8 (lid containing) revealed the lid's importance for stable lipid binding. Fluorescence assays revealed different transport efficiencies for PS and PI4P, with the lid slowing down transport and stabilizing cargo. Coarse-grained simulations highlighted surface-exposed regions and hydrophobic interactions facilitating lipid bilayer insertion. These findings enhance our comprehension of ORD8, its structure, and lipid transport mechanisms, as well as provide a structural basis for the design of potential inhibitors.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016800
- 003
- CZ-PrNML
- 005
- 20231026105532.0
- 007
- ta
- 008
- 231013s2023 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/cells12151974 $2 doi
- 035 __
- $a (PubMed)37566053
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Eisenreichova, Andrea $u Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic
- 245 10
- $a Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport / $c A. Eisenreichova, M. Klima, MM. Anila, A. Koukalova, J. Humpolickova, B. Różycki, E. Boura
- 520 9_
- $a ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited a β-barrel fold composed of anti-parallel β-strands, with three α-helices replacing β-strands on one side. This mixed alpha-beta structure was consistent with previously solved structures of ORP2 and ORP3. A large cavity (≈1860 Å3) within the barrel was identified as the lipid-binding site. Although we were not able to obtain a lipid-bound structure, we used computer simulations based on our crystal structure to dock PS and PI4P molecules into the putative lipid-binding site of the ORD8. Comparative experiments between the short ORD8ΔLid (used for crystallography) and the full-length ORD8 (lid containing) revealed the lid's importance for stable lipid binding. Fluorescence assays revealed different transport efficiencies for PS and PI4P, with the lid slowing down transport and stabilizing cargo. Coarse-grained simulations highlighted surface-exposed regions and hydrophobic interactions facilitating lipid bilayer insertion. These findings enhance our comprehension of ORD8, its structure, and lipid transport mechanisms, as well as provide a structural basis for the design of potential inhibitors.
- 650 _2
- $a biologický transport $7 D001692
- 650 12
- $a transportní proteiny $x metabolismus $7 D002352
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 12
- $a lipidy $x chemie $7 D008055
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Klima, Martin $u Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic $1 https://orcid.org/000000029083509X
- 700 1_
- $a Anila, Midhun Mohan $u Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
- 700 1_
- $a Koukalova, Alena $u Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic $1 https://orcid.org/0000000249698361
- 700 1_
- $a Humpolickova, Jana $u Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic
- 700 1_
- $a Różycki, Bartosz $u Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland $1 https://orcid.org/0000000159387308
- 700 1_
- $a Boura, Evzen $u Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic $1 https://orcid.org/0000000296524065
- 773 0_
- $w MED00194911 $t Cells $x 2073-4409 $g Roč. 12, č. 15 (2023)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37566053 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105526 $b ABA008
- 999 __
- $a ok $b bmc $g 2000379 $s 1203162
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 12 $c 15 $e 20230731 $i 2073-4409 $m Cells $n Cells $x MED00194911
- LZP __
- $a Pubmed-20231013