Immunohistochemical investigation of epithelial, mesenchymal, neuroectodermal, immune and endocrine markers in sterlet (Acipenser ruthenus), shortnose sturgeon (Acipenser brevirostrum) and common carp (Cyprinus carpio)
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018009
CENAKVA
CZ.02.1.01/0.0/0.0/16_019/0000869
PROFISH
No 652831 (AQUAEXCEL2020)
European Union's Horizon 2020 research and innovation programme
TNA project ID No. AE030061
European Union's Horizon 2020 research and innovation programme
PubMed
36478317
DOI
10.1007/s10695-022-01145-6
PII: 10.1007/s10695-022-01145-6
Knihovny.cz E-zdroje
- Klíčová slova
- Carp, IHC, Sturgeon,
- MeSH
- antigeny CD45 MeSH
- kapři * MeSH
- keratiny MeSH
- ryby MeSH
- thyreoglobulin MeSH
- thyroxin MeSH
- vimentin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD45 MeSH
- keratiny MeSH
- thyreoglobulin MeSH
- thyroxin MeSH
- vimentin MeSH
Immunohistochemistry (IHC) is a laboratory method widely used to characterize tissue and cell origin, both in human and veterinary medicine. In fish, however, little is known about staining characteristics of most tissue types, and especially for less studied chondrostean fish. The aim of this study was to examine the specificity of various immunohistochemical markers in tissues of chondrostean and teleostean fish and to validate diagnostic tests. Sterlet (Acipenser ruthenus L.), shortnose sturgeon (Acipenser brevirostrum) and common carp (Cyprinus carpio L.) were examined. Markers were chosen as representatives of epithelial (cytokeratin AE1/AE3), mesenchymal (vimentin), neuroectodermal (S-100 protein), lymphoid (leukocyte common antigen, LCA) and endocrine (thyroglobulin, thyroxin) tissues and organs. Applied antibodies were of monoclonal or polyclonal mammalian origin and primarily intended for human medicine research or diagnostic application. No species differences were obvious while examining sterlet, shortnose sturgeon and carp. Cytokeratin AE1/AE3, vimentin, S-100 protein and thyroxin were positive on targeted tissues and structures. Leukocyte common antigen (LCA) and thyroglobulin were negative on targeted structures, however, and with clear cross-reactivity on non-targeted tissues (vascular wall, granulocytes). Conclusive results were obtained when using polyclonal antibodies with dilution adjusted to laboratory practice, while application of ready-to-use (RTU) kits with pre-diluted antibodies or monoclonal antibodies often showed conflicting or inconclusive results.
Zobrazit více v PubMed
Abbate F, Catania S, Germanà A, González T, Diaz-Esnal B et al (2002) S-100 protein is a selective marker for sensory hair cells of the lateral line system in teleosts. Neurosci Lett 329:133–136 DOI
Alabyev BY, Guselnikov SV, Najakshin AM, Mechetina LV, Taranin AV (2000) CD3 epsilon homologues in the chondrostean fish Acipenser ruthenus. Immunogenetics 51:1012–1020. https://doi.org/10.1007/s002510000236 DOI
Athanasou NA, Quinn J, Heryet A, Woods CG, Mcgee JO (1987) Effect of decalcification agents on immunoreactivity of cellular antigens. J Clin Pathol 40:874–878 DOI
Bejarano PA, Nikiforov YE, Swenson ES, Biddinger PW (2000) Thyroid transcription factor-1, thyroglobulin, cytokeratin 7, and cytokeratin 20 in thyroid neoplasms. Appl Immunohistochem Mol Morphol 8:189–194 DOI
Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D (2007) Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134:4147–4156
Bunton TE (1993) The immunocytochemistry of cytokeratin in fish tissues. Vet Pathol 30:419–425 DOI
Dezfuli BS, Giari L, Lorenzoni M, Manera M et al (2014) Perch liver reaction to Triaenophorus nodulosus plerocercoids with an emphasis on piscidins 3, 4 and proliferative cell nuclear antigen (PCNA) expression. Vet Parasitol 200:104–110
Dickhoff WW, Darling S (1983) Evolution of thyroid functions and its control in lower vertebrates. Am Zool 23:697–707 DOI
Donato R, Cannon BR, Sorci G, Riuzz F, Hsu K et al (2013) Functions of S100 proteins. Curr Mol Med 13:24–57 DOI
Evensen O, Meier W, Wahli T, Olesen NJ, Jorgensen PEV et al (1994) Comparison of immunohistochemistry and virus cultivation for detection of viral haemorrhagic septicaemia virus in experimental infected rainbow trout Oncorhynchus mykiss. Dis Aquat Org 20:101–109 DOI
Failde LD, Bermudez R, Vigliano F, Coscelli GA, Quiroga MI (2014) Morphological, immunohistochemical and ultrastructural characterization of the skin of turbot (Psetta maxima L.). Tissue Cell 46:334–342 DOI
Fonseca Vera G., Rosa Joana, Laizé Vincent, Gavaia Paulo J., Cancela M. Leonor (2011) Identification of a new cartilage-specific S100-like protein up-regulated during endo/perichondral mineralization in gilthead seabream. Gene Expression Patterns 11(7):448–455
Germanà A, Montalbanoa G, Laurà R, Ciriacoa E et al (2004) S100 protein-like immunoreactivity in the crypt olfactory neurons of the adult zebrafish. Microsc Res Tech 71:248–255 DOI
Germanà A, Marino F, Guerrera MC, Campo S, de Girolamo P (2008) Expression and distribution of S100 protein in the nervous system of the adult zebrafish (Danio rerio). Neurosci Lett 371:196–198 DOI
Geven EJW, Nguyen NK, van den Boogaart M, Spanings FAT, Flik G et al (2007) Comparative thyroidology: thyroid gland location and iodothyronine dynamics in Mozambique tilapia (Oreochromis mossambicus Peters) and common carp (Cyprinus carpio L.). J Exp Biol 210:4005–4015 DOI
Herrmann H, Haner M, Brettel M, Muller SA, Goldie KN, Fedtke B, Lustig A, Franke WW, Aebi U (1996) Structure and assembly properties of the intermediate filament protein vimentin: The role of its head, rod and tail domains. J Mol Biol 264:933–953. https://doi.org/10.1006/jmbi.1996.0688 DOI
Holzer G, Morishita Y, Fini JB, Lorin T, Gillet B (2016) Thyroglobulin represents a novel molecular architecture of vertebrates. J Biol Chem 291:16553–16566 DOI
Iaria C, Ieni A, Corti I, Puleio R, Brachelente C et al (2019) Immunohistochemical study of four fish tumors. J Aquat Anim Health 31:97–106 DOI
Jorgensen TR, Raida MK, Kania PW, Buchmann K (2009) Response of rainbow trout (Oncorhynchus mykiss) in skin and fin tissue during infection with a variant of Gyrodactylus salaris (Monogenea: Gyrodactylidae). Folia Parasitica 56:251–258 DOI
Kim JH, Kim HJ, Kim DH, Yim JH, Lee SJ (2016) Successful response to imatinib in two dogs with inoperable grade III infiltrating mast cell tumours: a case report. Vet Med 61:467–547 DOI
Kurtin PJ, Pinkus GS (1985) Leukocyte common antigen-a diagnostic discriminant between hematopoietic and nonhematopoietic neoplasms in paraffin sections using monoclonal antibodies: correlation with immunologic studies and ultrastructural localization. Hum Pathol 16:353–365 DOI
Matthews JB (1982) Influence of decalcification on immunohistochemical staining of formalin-fixed paraffin-embedded tissue. J Clin Pathol 35:1392–1394 DOI
Nielsen S (2012) Cytokeratins. In: Nielsen S: Atlas of stains, Dako, 4th edn. pp 59–67. www.patologi.com/DAKO_atlas_of_stains.pdf
Pan QS, Fang ZP, Zhao YX (2000) Immunocytochemical identification and localization of APUD cells in the gut of seven stomachless teleost fishes. World J Gastroenterol 6:96–101 DOI
Paquette CE, Kent ML, Peterson TS, Wang R, Dashwood RH et al (2015) Immunohistochemical characterization of Intestinal Neoplasia in Zebrafish (Danio rerio) indicates epithelial origin. Dis Aquat Org 116:191–197 DOI
Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol 42:405–426 DOI
Ramos-Vara JA, Miller MA (2014) When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry—the red, brown, and blue technique. Vet Pathol 51:42–87 DOI
Ramos-Vara JA, Miller MA, Johnson GC, Pace LW (2002) Immunohistochemical detection of thyroid transcription factor-1, thyroglobulin, and calcitonin in canine normal, hyperplastic, and neoplastic thyroid gland. Vet Pathol 39:480–487 DOI
Ramos-Vara JA, Kiupel M, Baszler T, Bliven L, Brodersen B et al (2008) Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagnosis and Investigation 20:393–413 DOI
Ruiz FS, Alessi AC, Chagas CA, Pinto GA, Vassallo J (2005) Immunohistochemistry in diagnostic veterinary pathology: a critical review. J Brasileiro De Patologia e Medicina Laboratorial 41:263–270
Salkova E, Flajshans F, Steinbach C (2020) Immunohistochemical mapping of thymic microenvironment in sterlet (Acipenser ruthenus). Veterinární Medicína 65:301–308 DOI
Sandulescu CM, Teow RY, Hale ME, Zhang C (2011) Onset and dynamic expression of S100 protein in the olfactory organ and the lateral line system in zebrafish development. Brain Res 1383:120–127 DOI
Schaffeld M, Herrmann H, Schultess J, Markl J (2001) Vimentin and desmin of a cartilaginous fish, the shark Scyliorhinus stellaris: sequence, expression patterns and in vitro assembly. Eur J Cell Biol 80:692–702 DOI
Schaffeld M, Haberkamp M, Schatzlein S, Neumann S, Hunzinger C (2007) A novel and ancient group of type I keratins with members in bichir, sturgeon and gar. Front Zool 4:16
Schmitz RJ (1998) Comparative ultrastructure of the cellular components of the unconstricted notochord in the sturgeon and the lungfish. J Morphol 236:75–104. https://doi.org/10.1002/(SICI)1097-4687(199805)236:2 DOI
Sirri R, Mandrioli L, Grieco V, Bacci B, Brunett B et al (2010) Seminoma in a koi carp Cyprinus carpio: histopathological and immunohistochemical findings. Dis Aquat Org 92:83–88 DOI
Swerdlow SH, Campo E, Lee Harris N, Jaffe ES, Pileri SA, Stein H, Thiele J (2008) WHO Classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer, Lyon, pp 439
Tchilian EZ, Beverley PC (2006) Altered CD45 expression and disease. Trends Immunol 27:146–153. https://doi.org/10.1016/j.it.2006.01.001 DOI
Yasumoto S, Koga D, Tanaka K, Kondo M, Takahashi Y (2015) Histopathological and immunohistochemical studies of gonadal undifferentiated carcinoma in common carp Cyprinus carpio. Fish Pathology 50:53–59 DOI