Pochapski, Jose A*
Dotaz
Zobrazit nápovědu
Methylphenidate is a stimulant used to treat attention deficit and hyperactivity disorder (ADHD). In the last decade, illicit use of methylphenidate has increased among healthy young adults, who consume the drug under the assumption that it will improve cognitive performance. However, the studies that aimed to assess the methylphenidate effects on memory are not consistent. Here, we tested whether the effect of methylphenidate on a spatial memory task can be explained as a motivational and/or a reward effect. We tested the effects of acute and chronic i.p. administration of 0.3, 1 or 3 mg/kg of methylphenidate on motivation, learning and memory by using the 8-arm radial maze task. Adult male Wistar rats learned that 3 of the 8 arms of the maze were consistently baited with 1, 3, or 6 sucrose pellets, and the number of entries and reentries into reinforced and non-reinforced arms of the maze were scored. Neither acute nor chronic (20 days) methylphenidate treatment affected the number of entries in the non-baited arms. However, chronic, but not acute, 1-3 mg/kg methylphenidate increased the number of reentries in the higher reward arms, which suggests a motivational/rewarding effect rather than a working memory deficit. In agreement with this hypothesis, the methylphenidate treatment also decreased the approach latency to the higher reward arms, increased the approach latency to the low reward arm, and increased the time spent in the high, but not low, reward arm. These findings suggest that methylphenidate may act more as a motivational enhancer rather than a cognitive enhancer in healthy people.
- MeSH
- hyperkinetická porucha * farmakoterapie MeSH
- krysa rodu rattus MeSH
- methylfenidát * farmakologie terapeutické užití MeSH
- motivace MeSH
- odměna MeSH
- potkani Wistar MeSH
- stimulanty centrálního nervového systému * farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The nucleus accumbens (NAc) is considered an interface between motivation and action, with NAc neurons playing an important role in promoting reward approach. However, the encoding by NAc neurons that contributes to this role remains unknown. We recorded 62 NAc neurons in male Wistar rats (n = 5) running towards rewarded locations in an 8-arm radial maze. Variables related to locomotor approach kinematics were the best predictors of the firing rate for most NAc neurons. Nearly 18% of the recorded neurons were inhibited during the entire approach run (locomotion-off cells), suggesting that reduction in firing of these neurons promotes initiation of locomotor approach. 27% of the neurons presented a peak of activity during acceleration followed by a valley during deceleration (acceleration-on cells). Together, these neurons accounted for most of the speed and acceleration encoding identified in our analysis. In contrast, a further 16% of neurons presented a valley during acceleration followed by a peak just prior to or after reaching reward (deceleration-on cells). These findings suggest that these three classes of NAc neurons influence the time course of speed changes during locomotor approach to reward.
- MeSH
- biomechanika MeSH
- krysa rodu rattus MeSH
- lokomoce MeSH
- neurony * fyziologie MeSH
- nucleus accumbens * fyziologie MeSH
- odměna MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH