Q100456219
Dotaz
Zobrazit nápovědu
A chromophoric nonionogenic surfactant poly(ethylene glycol) 3-(2-hydroxy-5-n-octylphenylazo)-benzoate, HOPAB, has been prepared and used as a buffer additive for a dynamic modification of proteins and/or microorganisms including Escherichia coli , Staphylococcus epidermidis (biofilm-positive and biofilm-negative), and the strains of yeast cells Candida albicans and Candida parapsilosis (biofilm-positive and biofilm-negative) during a capillary electrophoresis and a capillary isoelectric focusing (CIEF) with UV detection at 326 nm. Values of isoelectric points of labeled proteins and microorganisms have been calculated using UV-detectable pI markers and have been found comparable with pI of the native compounds. Minimum detectable amount has been assessed lower than picograms of proteins and lower than a hundred cells injected into a separation capillary. The introduced labeling method facilitates CIEF separation of microorganisms from the clinical sample of the infected urine at their clinically important levels in the pH gradient pH range of 2-5 and their subsequent cultivation. At the same time, it has enabled the determination of albumin in human urine as a major clinical marker of urinary tract infections and kidney diseases.
- MeSH
- bakteriální proteiny izolace a purifikace MeSH
- elektroforéza kapilární metody MeSH
- fungální proteiny izolace a purifikace MeSH
- isoelektrická fokusace metody MeSH
- lidé MeSH
- povrchově aktivní látky chemie MeSH
- spektrofotometrie ultrafialová metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Preparation of organic polymer monolithic columns in fused silica capillaries was aimed at fast gradient separation of proteins. For this purpose, polymerization in situ procedure was optimized, using ethylene dimetacrylate and butyl metacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in presence of non-aqueous porogen solvent mixtures composed of 1-propanol and 1,4-butanediol. The separation of proteins in totally monolithic capillary columns was compared with the chromatography on a new type of "hybrid interparticle monolithic" capillary columns, prepared by in situ polymerization in capillary packed with superficially porous spherical beds, 37-50 microm. The "hybrid" columns showed excellent stability and improved hydrodynamic flow properties with respect to the "totally" monolithic capillary columns. The separation selectivity is similar in the two types of columns. The nature of the superficially porous layer (bare silica or bonded C18 ligands) affects the separation selectivity less significantly than the porosity (density) of the monolithic moiety in the interparticle space, controlled by the composition of the polymerization mixture. The retention behaviour of proteins on all prepared columns is consistent with the reversed-phase gradient elution theory.