Redox-activated phospholipase iPLA2γ Dotaz Zobrazit nápovědu
Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA β-oxidation in pancreatic β-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondrial Ca2+-independent phospholipase A2γ (iPLA2γ/PNPLA8) was previously shown to be directly activated by H2O2 and release free fatty acids (FAs) for FA-dependent H+ transport mediated by the adenine nucleotide translocase (ANT) or uncoupling protein 2 (UCP2). The resulting mild mitochondrial uncoupling and consequent partial attenuation of mitochondrial superoxide production lead to an antioxidant effect. However, the antioxidant role of iPLA2γ in the brain is not completely understood. Here, using wild-type and iPLA2γ-KO mice, we demonstrate the ability of tert-butylhydroperoxide (TBHP) to activate iPLA2γ in isolated brain mitochondria, with consequent liberation of FAs and lysophospholipids. The liberated FA caused an increase in respiratory rate, which was fully inhibited by carboxyatractyloside (CATR), a specific inhibitor of ANT. Employing detailed lipidomic analysis, we also demonstrate a typical cleavage pattern for TBHP-activated iPLA2γ, reflecting cleavage of glycerophospholipids from both sn-1 and sn-2 positions releasing saturated FAs, monoenoic FAs, and predominant polyunsaturated FAs. The acute antioxidant role of iPLA2γ-released FAs is supported by monitoring both intramitochondrial superoxide and extramitochondrial H2O2 release. We also show that iPLA2γ-KO mice were more sensitive to stimulation by pro-inflammatory lipopolysaccharide, as reflected by the concomitant increase in protein carbonyls in the brain and pro-inflammatory IL-6 release in the serum. These data support the antioxidant and anti-inflammatory role of iPLA2γ in vivo. Our data also reveal a substantial decrease of several high molecular weight cardiolipin (CL) species and accumulation of low molecular weight CL species in brain mitochondria of iPLA2γ-KO mice. Collectively, our results support a key role of iPLA2γ in the remodeling of lower molecular weight immature cardiolipins with predominantly saturated acyl chains to high molecular weight mature cardiolipins with highly unsaturated PUFA acyl chains, typical for the brain.
- Publikační typ
- časopisecké články MeSH
Mitochondrial uncoupling protein-2 (UCP2) has been suggested to participate in the attenuation of the reactive oxygen species production, but the mechanism of action and the physiological significance of UCP2 activity remain controversial. Here we tested the hypothesis that UCP2 provides feedback downregulation of oxidative stress in vivo via synergy with an H2O2-activated mitochondrial calcium-independent phospholipase A2 (mt-iPLA2). Tert-butylhydroperoxide or H2O2 induced free fatty acid release from mitochondrial membranes as detected by gas chromatography/mass spectrometry, which was inhibited by r-bromoenol lactone (r-BEL) but not by its stereoisomer s-BEL, suggesting participation of mt-iPLA2γ isoform. Tert-butylhydroperoxide or H2O2 also induced increase in respiration and decrease in mitochondrial membrane potential in lung and spleen mitochondria from control but not UCP2-knockout mice. These data suggest that mt-iPLA2γ-dependent release of free fatty acids promotes UCP2-dependent uncoupling. Upon such uncoupling, mitochondrial superoxide formation decreased instantly also in the s-BEL presence, but not when mt-iPLA2 was blocked by R-BEL and not in mitochondria from UCP2-knockout mice. Mt-iPLA2γ was alternatively activated by H2O2 produced probably in conjunction with the electron-transferring flavoprotein:ubiquinone oxidoreductase (ETFQOR), acting in fatty acid β-oxidation. Palmitoyl-d,l-carnitine addition to mouse lung mitochondria, respiring with succinate plus rotenone, caused a respiration increase that was sensitive to r-BEL and insensitive to s-BEL. We thus demonstrate for the first time that UCP2, functional due to fatty acids released by redox-activated mt-iPLA2γ, suppresses mitochondrial superoxide production by its uncoupling action. In conclusion, H2O2-activated mt-iPLA2γ and UCP2 act in concert to protect against oxidative stress.
- MeSH
- antioxidancia metabolismus MeSH
- buněčné dýchání účinky léků MeSH
- down regulace účinky léků MeSH
- fosfolipasy A2, skupina VI metabolismus MeSH
- iontové kanály metabolismus MeSH
- játra cytologie MeSH
- mastné kyseliny sekrece MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie účinky léků enzymologie metabolismus MeSH
- myši MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku farmakologie MeSH
- slezina cytologie MeSH
- superoxidy metabolismus MeSH
- terc-butylhydroperoxid farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIMS: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)-mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. RESULTS: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein-coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). INNOVATION AND CONCLUSION: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity.
- MeSH
- antioxidancia farmakologie MeSH
- beta-buňky účinky léků MeSH
- fosfolipasy A2, skupina II metabolismus MeSH
- inzulin sekrece MeSH
- iontové kanály metabolismus MeSH
- krysa rodu rattus MeSH
- lipidy toxicita MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie účinky léků MeSH
- nádorové buněčné linie MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- receptory spřažené s G-proteiny metabolismus MeSH
- signální transdukce účinky léků MeSH
- superoxidy metabolismus MeSH
- terc-butylhydroperoxid farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mitochondrial uncoupling protein-2 (UCP2) mediates free fatty acid (FA)-dependent H+ translocation across the inner mitochondrial membrane (IMM), which leads to acceleration of respiration and suppression of mitochondrial superoxide formation. Redox-activated mitochondrial phospholipase A2 (mt-iPLA2γ) cleaves FAs from the IMM and has been shown to acts in synergy with UCP2. Here, we tested the mechanism of mt-iPLA2γ-dependent UCP2-mediated antioxidant protection using lipopolysaccharide (LPS)-induced pro-inflammatory and pro-oxidative responses and their acute influence on the overall oxidative stress reflected by protein carbonylation in murine lung and spleen mitochondria and tissue homogenates. We provided challenges either by blocking the mt-iPLA 2γ function by the selective inhibitor R-bromoenol lactone (R-BEL) or by removing UCP2 by genetic ablation. We found that the basal levels of protein carbonyls in lung and spleen tissues and isolated mitochondria were higher in UCP2-knockout mice relative to the wild-type (wt) controls. The administration of R-BEL increased protein carbonyl levels in wt but not in UCP2-knockout (UCP2-KO) mice. LPS further increased the protein carbonyl levels in UCP2-KO mice, which correlated with protein carbonyl levels determined in wt mice treated with R-BEL. These results are consistent with the UCP2/mt-iPLA 2γ antioxidant mechanisms in these tissues and support the existence of UCP2-synergic mt-iPLA 2γ-dependent cytoprotective mechanism in vivo.
- Publikační typ
- časopisecké články MeSH